

RA4E1 Group

Renesas Microcontrollers

R01DS0391EJ0100 Rev.1.00 Sep 15, 2021

Leading-performance 100 MHz Arm Cortex-M33 core, up to 512 KB code flash memory with background operation, 8 KB Data flash memory, and 128 KB SRAM with Parity. High-integration with USB 2.0 Full-Speed, Quad SPI, and advanced analog.

Features

- Arm® Cortex®-M33 Core
 - Armv8-M architecture with the main extension
 - Maximum operating frequency: 100 MHz
 - Arm Memory Protection Unit (Arm MPU)
 - Anni Memory Protection Unit (Arm MPU)
 Protected Memory System Architecture (PMSAv8)
 Secure MPU (MPU_S): 8 regions
 Non-secure MPU (MPU_NS): 8 regions
 SysTick timer

 - Embeds two Systick timers: Secure and Non-secure instance
 - Driven by LOĆO or system clock
 - CoreSight[™] ETM-M33

Memory

- Up to 512-KB code flash memory
 8-KB data flash memory (100,000 program/erase (P/E) cycles)
- 128-KB SRAM

■ Connectivity

- Serial Communications Interface (SCI) × 4
- Asynchronous interfaces 8-bit clock synchronous interface
- Smart card interface
- Simple IIC
- Simple SPI
- Manchester coding (SCI3, SCI4)

- 1²C bus interface (IIC)
 Serial Peripheral Interface (SPI)
 Quad Serial Peripheral Interface (QSPI)
 USB 2.0 Full-Speed Module (USBFS)
- Control Area Network module (CAN)

Analog

- 12-bit A/D Converter (ADC12)
- 12-bit D/A Converter (DAC12)

Timers

- General PWM Timer 32-bit (GPT32) × 2
- General PWM Timer 16-bit (GPT16) × 2
- Low Power Asynchronous General Purpose Timer (AGT) × 5

■ Security and Encryption

- Arm® TrustZone®
 - Up to three regions for the code flash
 - Up to two regions for the data flash
 - Up to three regions for the SRAM
 - Individual secure or non-secure security attribution for each peripheral

■ System and Power Management

- Low power modes
- Battery backup function (VBATT)
- Realtime Clock (RTC) with calendar and VBATT support
- Event Link Controller (ELC)
- Data Transfer Controller (DTC)
- DMA Controller (DMAC) × 8
- Power-on reset
- Low Voltage Detection (LVD) with voltage settings
- Watchdog Timer (WDT)
- Independent Watchdog Timer (IWDT)

■ Multiple Clock Sources

- Main clock oscillator (MOSC) (8 to 24 MHz)
- Sub-clock oscillator (SOSC) (32.768 kHz) High-speed on-chip oscillator (HOCO) (16/18/20 MHz)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
 IWDT-dedicated on-chip oscillator (15 kHz)
- Clock trim function for HOCO/MOCO/LOCO
 PLL/PLL2
- Clock out support

■ General-Purpose I/O Ports

- 5-V tolerance, open drain, input pull-up, switchable driving ability
- Operating Voltage
 - VCC: 2.7 to 3.6 V

Operating Temperature and Packages

- Ta = -40°C to +85°C

 - 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch) 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch)

1. Overview

The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

The MCU in this series incorporates a high-performance Arm Cortex®-M33 core running up to 100 MHz with the following features:

- Up to 512 KB code flash memory
- 128 KB SRAM
- Quad Serial Peripheral Interface (QSPI)
- USBFS
- Analog peripherals
- Security and safety features

1.1 Function Outline

Table 1.1 Arm core

Feature	Functional description
Arm Cortex-M33 core	 Maximum operating frequency: up to 100 MHz Arm Cortex-M33 core: Armv8-M architecture with security extension Revision: r0p4-00rel0 Arm Memory Protection Unit (Arm MPU) Protected Memory System Architecture (PMSAv8) Secure MPU (MPU_S): 8 regions Non-secure MPU (MPU_NS): 8 regions SysTick timer Embeds two Systick timers: Secure and Non-secure instance Driven by SysTick timer clock (SYSTICCLK) or system clock (ICLK) CoreSight[™] ETM-M33

Table 1.2 Memory

Feature	Functional description
Code flash memory	Maximum 512 KB of code flash memory.
Data flash memory	8 KB of data flash memory.
Option-setting memory	The option-setting memory determines the state of the MCU after a reset.
SRAM	On-chip high-speed SRAM with or without parity bit.

Table 1.3 System (1 of 2)

Feature	Functional description
Operating modes	Two operating modes: • Single-chip mode • SCI/USB boot mode
Resets	The MCU provides 13 resets.
Low Voltage Detection (LVD)	The Low Voltage Detection (LVD) module monitors the voltage level input to the VCC pin. The detection level can be selected by register settings. The LVD module consists of three separate voltage level detectors (LVD0, LVD1, LVD2). LVD0, LVD1, and LVD2 measure the voltage level input to the VCC pin. LVD registers allow your application to configure detection of VCC changes at various voltage thresholds.

Table 1.3 System (2 of 2)

Feature	Functional description
Clocks	Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) IWDT-dedicated on-chip oscillator PLL/PLL2 Clock out support
Clock Frequency Accuracy Measurement Circuit (CAC)	The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock selected as the measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated.
Interrupt Controller Unit (ICU)	The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector Interrupt Controller (NVIC), the DMA Controller (DMAC), and the Data Transfer Controller (DTC) modules. The ICU also controls non-maskable interrupts.
Low power modes	Power consumption can be reduced in multiple ways, including setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes.
Battery backup function	A battery backup function is provided for partial powering by a battery. The battery-powered area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT.
Register write protection	The register write protection function protects important registers from being overwritten due to software errors. The registers to be protected are set with the Protect Register (PRCR).
Memory Protection Unit (MPU)	The MCU has one Memory Protection Unit (MPU).

Table 1.4 Event link

Feature	Functional description
	The Event Link Controller (ELC) uses the event requests generated by various peripheral modules as source signals to connect them to different modules, allowing direct link between the modules without CPU intervention.

Table 1.5 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request.
DMA Controller (DMAC)	The MCU includes an 8-channel direct memory access controller (DMAC) that can transfer data without intervention from the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address.

Table 1.6 External bus interface

Feature	Functional description
External bus	QSPI area (EQBIU): Connected to the QSPI (external device interface)

Table 1.7 Timers (1 of 2)

Feature	Functional description
General PWM Timer (GPT)	The General PWM Timer (GPT) is a 32-bit timer with GPT32 × 2 channels and a 16-bit timer with GPT16 × 2 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer.
Port Output Enable for GPT (POEG)	The Port Output Enable (POEG) function can place the General PWM Timer (GPT) output pins in the output disable state

Table 1.7 Timers (2 of 2)

Feature	Functional description
Low power Asynchronous General Purpose Timer (AGT)	The low power Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This timer consists of a reload register and a down counter. The reload register and the down counter are allocated to the same address, and can be accessed with the AGT register.
Realtime Clock (RTC)	The realtime clock (RTC) has two counting modes, calendar count mode and binary count mode, that are used by switching register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
Watchdog Timer (WDT)	The Watchdog Timer (WDT) is a 14-bit down counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, the WDT can be used to generate a non-maskable interrupt or an underflow interrupt.
Independent Watchdog Timer (IWDT)	The Independent Watchdog Timer (IWDT) consists of a 14-bit down counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or an underflow interrupt. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically by a reset, underflow, refresh error, or a refresh of the count value in the registers.

Table 1.8 Communication interfaces

Feature	Functional description
Serial Communications Interface (SCI)	The Serial Communications Interface (SCI) × 4 channels have asynchronous and synchronous serial interfaces: • Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) • 8-bit clock synchronous interface • Simple IIC (master-only) • Simple SPI • Smart card interface • Manchester interface The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCIn (n = 0, 3, 4, 9) has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator.
I ² C bus interface (IIC)	The I ² C bus interface (IIC) has 1 channel. The IIC module conforms with and provides a subset of the NXP I ² C (Inter-Integrated Circuit) bus interface functions.
Serial Peripheral Interface (SPI)	The Serial Peripheral Interface (SPI) has 1 channel. The SPI provides high-speed full-duplex synchronous serial communications with multiple processors and peripheral devices.
Control Area Network (CAN)	The Controller Area Network (CAN) module uses a message-based protocol to receive and transmit data between multiple slaves and masters in electromagnetically noisy applications. The module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. The CAN module requires an additional external CAN transceiver.
USB 2.0 Full-Speed module (USBFS)	The USB 2.0 Full-Speed module (USBFS) can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system.
Quad Serial Peripheral Interface (QSPI)	The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface.

Table 1.9 Analog

Feature	Functional description
12-bit A/D Converter (ADC12)	A 12-bit successive approximation A/D converter is provided. Up to 9 analog input channels are selectable.
12-bit D/A Converter (DAC12)	A 12-bit D/A converter (DAC12) is provided.

Table 1.10 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) calculator	The Cyclic Redundancy Check (CRC) generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generation polynomials are available.
Data Operation Circuit (DOC)	The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. When a selected condition applies, 16-bit data is compared and an interrupt can be generated.

1.2 Block Diagram

Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the features.

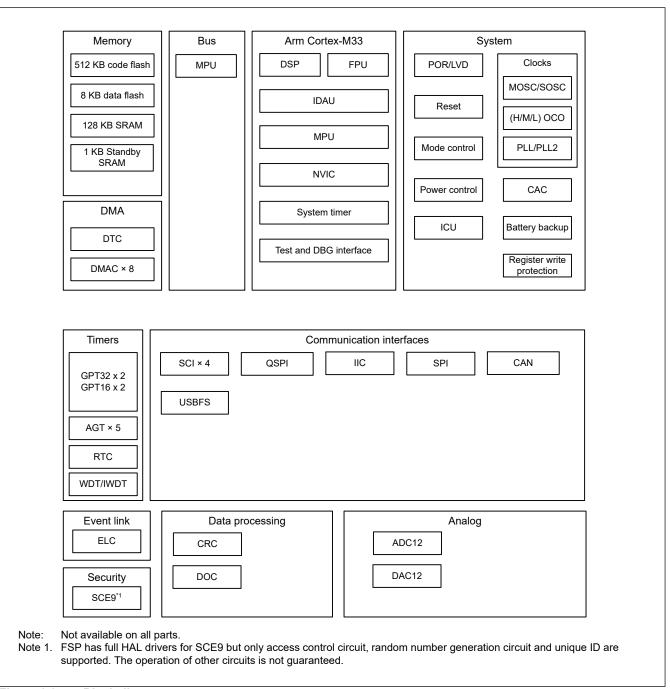


Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.11 shows a list of products.

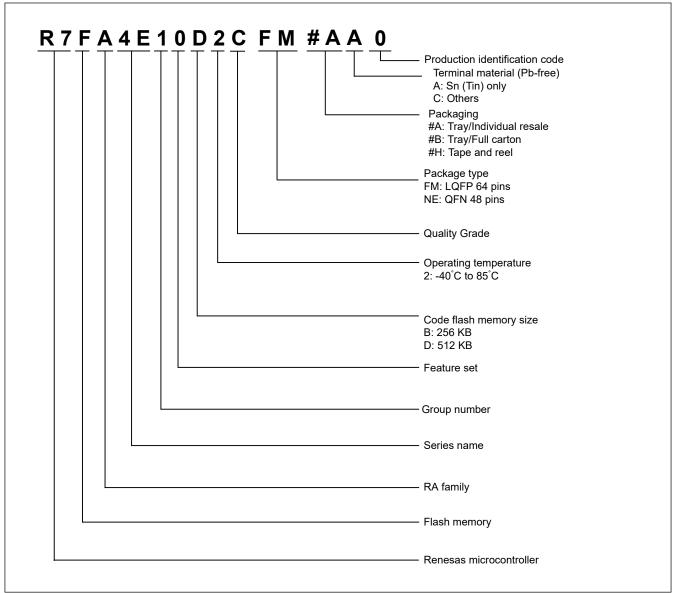


Figure 1.2 Part numbering scheme

Table 1.11 Product list

Product part number	Package code	Code flash	Data flash	SRAM	Operating temperature
R7FA4E10D2CFM	PLQP0064KB-C	512 KB	8 KB	128 KB	-40 to +85°C
R7FA4E10D2CNE	PWQN0048KC-A				
R7FA4E10B2CFM	PLQP0064KB-C	256 KB	8 KB	128 KB	-40 to +85°C
R7FA4E10B2CNE	PWQN0048KC-A				

1.4 Function Comparison

Table 1.12 Function Comparison

Parts number		R7FA4E10D2CFM R7FA4E10B2CFM	R7FA4E10D2CNE R7FA4E10B2CNE
Pin count		64	48
Package		LQFP	QFN
Code flash memory			512KB 256KB
Data flash memory			8 KB
SRAM			128 KB
	Parity		64 KB
Standby SRAM			1 KB
DMA	DTC		Yes
	DMAC		8
System	CPU clock	100	MHz (max.)
	CPU clock sources	MOSC, SOSC, HO	OCO, MOCO, LOCO, PLL
	CAC		Yes
	WDT/IWDT		Yes
	Backup register		128 B
Communication	SCI ^{*1}		4
	IIC		1
	SPI		1
	CAN		1
	USBFS		Yes
	QSPI	Yes	No
Timers	GPT32*1		2
	GPT16*1		2
	AGT*1		5
	RTC		Yes
Analog	ADC12	9	7
	DAC12		1
Data processing	CRC		Yes
	DOC		Yes
Event control	ELC		Yes
Security		SCE9*2. TrustZone.	and Lifecycle management

Note 1. Available pins depend on the Pin count, about details see section 1.7. Pin Lists.

Note 2. FSP has full HAL drivers for SCE9 but only access control circuit, random number generation circuit and unique ID are supported. The operation of other circuits is not guaranteed.

1.5 Pin Functions

Table 1.13 Pin functions (1 of 3)

Function	Signal	I/O	Description			
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a 0.1-µF capacitor. The capacitor should be placed close to the pin.			
	VCL	I/O	Connect this pin to the VSS pin by the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.			
	VBATT	Input	Battery Backup power pin			
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).			
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input			
	EXTAL	Input	through the EXTAL pin.			
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal			
	XCOUT	Output	resonator between XCOUT and XCIN.			
	CLKOUT	Output	Clock output pin			
Operating mode control	MD	Input	Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state.			
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.			
CAC	CACREF	Input	Measurement reference clock input pin			
On-chip emulator	TMS	I/O	On-chip emulator or boundary scan pins			
	TDI	Input				
	TCK	Input				
	TDO	Output				
	SWO	Output	Serial wire trace output pin			
	SWDIO	I/O	Serial wire debug data input/output pin			
	SWCLK	Input	Serial wire clock pin			
Interrupt	NMI	Input	Non-maskable interrupt request pin			
	IRQn	Input	Maskable interrupt request pins			
	IRQn-DS	Input	Maskable interrupt request pins that can also be used in Deep Software Standby mode			
GPT	GTETRGA, GTETRGB, GTETRGC, GTETRGD	Input	External trigger input pins			
	GTIOCnA, GTIOCnB	I/O	Input capture, output compare, or PWM output pins			
AGT	AGTEEn	Input	External event input enable signals			
	AGTIOn	I/O	External event input and pulse output pins			
	AGTOn	Output	Pulse output pins			
	AGTOAn	Output	Output compare match A output pins			
	AGTOBn	Output	Output compare match B output pins			
RTC	RTCOUT	Output	Output pin for 1-Hz or 64-Hz clock			
	RTCICn	Input	Time capture event input pins			

Table 1.13 Pin functions (2 of 3)

Function	Signal	I/O	Description
SCI	SCKn	I/O	Input/output pins for the clock (clock synchronous mode)
	RXDn	Input	Input pins for received data (asynchronous mode/clock synchronous mode)
	TXDn	Output	Output pins for transmitted data (asynchronous mode/clock synchronous mode)
	CTSn_RTSn	I/O	Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active-low.
	CTSn	Input	Input for the start of transmission.
	SCLn	I/O	Input/output pins for the IIC clock (simple IIC mode)
	SDAn	I/O	Input/output pins for the IIC data (simple IIC mode)
	SCKn	I/O	Input/output pins for the clock (simple SPI mode)
	MISOn	I/O	Input/output pins for slave transmission of data (simple SPI mode)
	MOSIn	I/O	Input/output pins for master transmission of data (simple SPI mode)
	SSn	Input	Chip-select input pins (simple SPI mode), active-low
IIC	SCLn	I/O	Input/output pins for the clock
	SDAn	I/O	Input/output pins for data
SPI	RSPCKA	I/O	Clock input/output pin
	MOSIA	I/O	Input or output pins for data output from the master
	MISOA	I/O	Input or output pins for data output from the slave
	SSLA0	I/O	Input or output pin for slave selection
	SSLA1 to SSLA3	Output	Output pins for slave selection
CAN	CRXn	Input	Receive data
	CTXn	Output	Transmit data
USBFS	VCC_USB	Input	Power supply pin
	VSS_USB	Input	Ground pin
	USB_DP	I/O	D+ pin of the USB on-chip transceiver. Connect this pin to the D+ pin of the USB bus.
	USB_DM	I/O	D- pin of the USB on-chip transceiver. Connect this pin to the D- pin of the USB bus.
	USB_VBUS	Input	USB cable connection monitor pin. Connect this pin to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a function controller.
	USB_VBUSEN	Output	VBUS (5 V) supply enable signal for external power supply chip
	USB_OVRCURA-DS	Input	Overcurrent pins for USBFS that can also be used in Deep Software Standby mode. Connect the external overcurrent detection signals to these pins.
QSPI	QSPCLK	Output	QSPI clock output pin
	QSSL	Output	QSPI slave output pin
	QIO0 to QIO3	I/O	Data0 to Data3

Table 1.13 Pin functions (3 of 3)

Function	Signal	I/O	Description
Analog power supply	AVCC0	Input	Analog voltage supply pin. This is used as the analog power supply for the respective modules. Supply this pin with the same voltage as the VCC pin.
	AVSS0	Input	Analog ground pin. This is used as the analog ground for the respective modules. Supply this pin with the same voltage as the VSS pin.
	VREFH	Input	Analog reference voltage supply pin for the D/A Converter. Connect this pin to AVCC0 when not using the D/A Converter.
	VREFL	Input	Analog reference ground pin for the D/A Converter. Connect this pin to AVSS0 when not using the D/A Converter.
	VREFH0	Input	Analog reference voltage supply pin for the ADC12. Connect this pin to AVCC0 when not using the ADC12.
	VREFL0	Input	Analog reference ground pin for the ADC12. Connect this pin to AVSS0 when not using the ADC12.
ADC12	ANmn	Input	Input pins for the analog signals to be processed by the A/D converter. (m: ADC unit number, n: pin number)
	ADTRGm	Input	Input pins for the external trigger signals that start the A/D conversion, active-low.
DAC12	DAn	Output	Output pins for the analog signals processed by the D/A converter.
I/O ports	Pmn	I/O	General-purpose input/output pins (m: port number, n: pin number)
	P200	Input	General-purpose input pin

1.6 Pin Assignments

The following figures show the pin assignments from the top view.

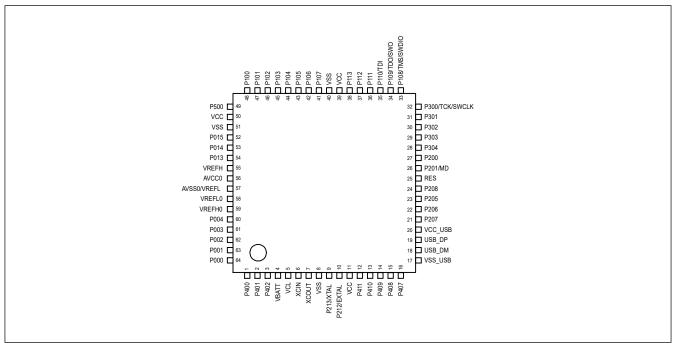


Figure 1.3 Pin assignment for LQFP 64-pin

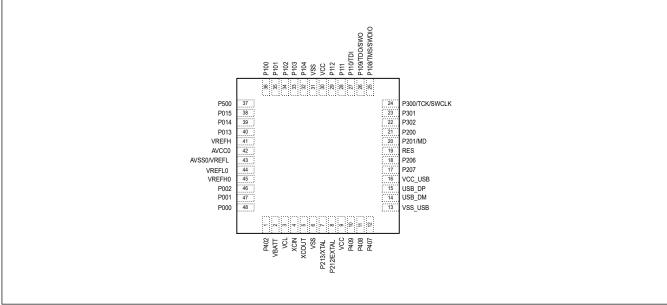


Figure 1.4 Pin assignment for QFN 48-pin

1.7 Pin Lists

Table 1.14 Pin list (1 of 2)

Iabi	<u> </u>	.14 Pin iis	1 (1 0	1 2)			
LQFP64	QFN48	Power, System, Clock, Debug, CAC	I/O ports	Ex. Interrupt	SCI/IIC/SPI/CAN/USBFS/QSPI	GPT/AGT/RTC	ADC12/DAC12
1		_	P400	IRQ0	SCK4/SCL0_A	AGTIO1	_
2	_	_	P401	IRQ5-DS	CTS4_RTS4/SS4/SDA0_A/CTX0	GTETRGA	_
3	1	CACREF	P402	IRQ4-DS	CTS4/CRX0	AGTIO0/AGTIO1/AGTIO2/AGTIO3/RTCIC0	_
4	2	VBATT	_	_	_	_	_
5	3	VCL	_	_	_	_	_
6	4	XCIN	_	_	_	_	_
7	5	XCOUT	_	_	_	_	_
8	6	VSS	_	_	_	_	_
9	7	XTAL	P213	IRQ2	_	GTETRGC/AGTEE2	_
10	8	EXTAL	P212	IRQ3	_	GTETRGD/AGTEE1	_
11	9	VCC	_	_	_	_	_
12	_	_	P411	IRQ4	TXD0/MOSI0/SDA0/CTS3_RTS3/SS3	AGTOA1	_
13		_	P410	IRQ5	RXD0/MISO0/SCL0/SCK3	AGTOB1	_
14	10	_	P409	IRQ6	TXD3/MOSI3/SDA3	AGTOA2	
15	11		P408	IRQ7	CTS4/RXD3/MISO3/SCL3/SCL0_B	AGTOB2	
16	12	_	P407		CTS4_RTS4/SS4/SDA0_B/USB_VBUS	AGTIO0/RTCOUT	ADTRG0
							ADIRGO
17	13	VSS_USB	_	_	-	_	_
18	14	USB_DM	_	_	_	_	_
19	15	USB_DP	_	_	_	_	_
20	16	VCC_USB	_	_	_	_	_
21	17	_	P207	_	TXD4/MOSI4/SDA4/QSSL	_	_
22	18	_	P206	IRQ0-DS	RXD4/MISO4/SCL4/CTS9/USB_VBUSEN	_	_
23	_	CLKOUT	P205	IRQ1-DS	TXD4/MOSI4/SDA4/CTS9_RTS9/SS9/USB_OVRCURA-DS	GTIOC4A/AGTO1	_
24	-	_	P208	_	QIO3	<u> </u>	_
25	19	RES	_	_	_	_	_
26	20	MD	P201	_	_	_	_
27	21	_	P200	NMI	_	_	_
28	_	_	P304	IRQ9	_	AGTEE2	_
29	_	_	P303	_	CTS9	_	_
30	22	_	P302	IRQ5	SSLA3	GTIOC4A	_
31	23	_	P301	IRQ6	CTS9_RTS9/SS9/SSLA2	GTIOC4B/AGTIO0	_
32	24	TCK/SWCLK	P300	_	SSLA1	_	_
33	25	TMS/SWDIO	P108	_	CTS9_RTS9/SS9/SSLA0	AGTOA3	_
34	26	TDO/SWO/CLKOUT	P109	_	TXD9/MOSI9/SDA9/MOSIA	GTIOC1A/AGTOB3	_
35	27	TDI	P110	IRQ3	RXD9/MISO9/SCL9/MISOA	GTIOC1B/AGTEE3	_
36	28	_	P111	IRQ4	SCK9/RSPCKA	AGTOA5	_
37	29	_	P112	_	SSLA0/QSSL	AGTOB5	_
38		_	P113	_	_	GTIOC2A/AGTEE5	_
39	30	VCC	_	_	_	_	_
40	31	VSS	_	_	_	_	_
41	_	_	P107	_	_	AGTOA0	_
42		_	P106	_	_	AGTOB0	_
43		_	P105	IRQ0	_	GTETRGA/GTIOC1A/AGTO2	_
44	32	_	P104	IRQ1	QIO2	GTETRGB/GTIOC1B/AGTEE2	_
45	33	_	P103	_	CTS0_RTS0/SS0/CTX0/QIO3	GTIOC2A/AGTIO2	_
46	34	_	P102		SCK0/CRX0/QIO0	GTIOC2B/AGTO0	ADTRG0
47			P101	IRQ1	TXD0/MOSI0/SDA0/QIO1	GTETRGB/GTIOC5A/AGTEE0	
+1	35		FIVI	inQ1	1 ADO/IVIOSIO/SDAO/QIO I	GILINGB/GIIOCSA/AGIEEU	

Table 1.14 Pin list (2 of 2)

LQFP64	QFN48	Power, System, Clock, Debug, CAC	I/O ports	Ex. Interrupt	SCI/IIC/SPI/CAN/USBFS/QSPI	GPT/AGT/RTC	ADC12/DAC12
48	36	_	P100	IRQ2	RXD0/MISO0/SCL0/QSPCLK	GTETRGA/GTIOC5B/AGTIO0	_
49	37	CACREF	P500	_	USB_VBUSEN/QSPCLK	AGTOA0	AN016
50	_	VCC	_	_	_	_	_
51	_	VSS	_	_	_	_	_
52	38	_	P015	IRQ13	_	_	AN013
53	39	_	P014	_	_	_	AN012/DA0
54	40	_	P013	_	_	_	AN011
55	41	VREFH	_	_	_	_	_
56	42	AVCC0	_	_	_	_	_
57	43	AVSS0/VREFL	_	_	_	_	_
58	44	VREFL0	_	_	_	_	_
59	45	VREFH0	_	_	_	_	_
60	_	_	P004	IRQ9-DS	_	_	AN004
61	_	_	P003	_	_	_	AN003
62	46	_	P002	IRQ8-DS	_	_	AN002
63	47	_	P001	IRQ7-DS	_	_	AN001
64	48	_	P000	IRQ6-DS	_	_	AN000

Note: Several pin names have the added suffix of _A, _B, _C, _D, _E, and _F. The suffix can be ignored when assigning functionality.

2. Electrical Characteristics

Supported peripheral functions and pins differ from one product name to another.

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

- $VCC = AVCC0 = VCC_USB = VBATT = 2.7 \text{ to } 3.6 \text{ V}$
- 2.7 ≤ VREFH0/VREFH ≤ AVCC0
- VSS = AVSS0 = VREFL0/VREFL = VSS USB = 0 V
- $\bullet \quad T_a = T_{opr}$

Figure 2.1 shows the timing conditions.

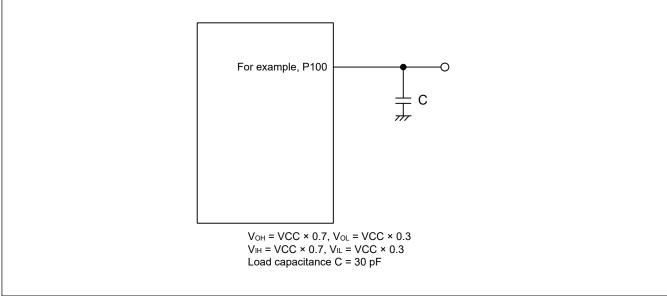


Figure 2.1 Input or output timing measurement conditions

The recommended measurement conditions for the timing specification of each peripheral provided are for the best peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions.

2.1 Absolute Maximum Ratings

Table 2.1 Absolute maximum ratings

Parameter	Symbol	Value	Unit
Power supply voltage	VCC, VCC_USB*2	-0.3 to +4.0	V
VBATT power supply voltage	VBATT	-0.3 to +4.0	V
Input voltage (except for 5 V-tolerant ports*1)	V _{in}	-0.3 to VCC + 0.3	V
Input voltage (5 V-tolerant ports*1)	V _{in}	-0.3 to + VCC + 4.0 (max. 5.8)	V
Reference power supply voltage	VREFH/VREFH0	-0.3 to VCC + 0.3	V
Analog power supply voltage	AVCC0*2	-0.3 to +4.0	V
Analog input voltage	V _{AN}	-0.3 to AVCC0 + 0.3	V
Operating temperature*3 *4	T _{opr}	-40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

- Note 1. Ports P205, P206, P400, P401, and P407 to P411 are 5 V tolerant.
- Note 2. Connect AVCC0 and VCC_USB to VCC.
- Note 3. See section 2.2.1. Tj/Ta Definition.
- Note 4. Contact a Renesas Electronics sales office for information on derating operation when Ta = +85°C. Derating is the systematic reduction of load for improved reliability.

Caution: Permanent damage to the MCU might result if absolute maximum ratings are exceeded.

Table 2.2 Recommended operating conditions

Parameter	Symbol	Value	Min	Тур	Max	Unit
Power supply voltages	VCC	When USB is not used	2.7	_	3.6	V
		When USB is used	3.0	_	3.6	V
	VSS		_	0	_	V
USB power supply voltages	VCC_USB	VCC_USB		VCC	_	V
	VSS_USB	VSS_USB			_	V
VBATT power supply voltage	VBATT		1.65 ^{*2}	_	3.6	V
Analog power supply voltages	AVCC0*1	AVCC0*1		VCC	_	V
	AVSS0	AVSS0			_	V

Note 1. Connect AVCC0 to VCC. When the A/D converter and the D/A converter are not in use, do not leave the AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC, and the AVSS0 and VREFL/VREFL0 pins to VSS, respectively.

2.2 DC Characteristics

2.2.1 Tj/Ta Definition

Table 2.3 DC characteristics

Conditions: Products with operating temperature (Ta) -40 to +85°C

Parameter	Symbol	Тур	Max	Unit	Test conditions
Permissible junction temperature	Tj	_	105	°C	High-speed mode Low-speed mode Subosc-speed mode

Note: Make sure that $T_j = T_a + \theta ja \times total$ power consumption (W), where total power consumption = (VCC - V_{OH}) × $\Sigma I_{OH} + V_{OL} \times \Sigma I_{OL} + I_{CC} max \times VCC$.

2.2.2 I/O V_{IH}, V_{IL}

Table 2.4 I/O V_{IH}, V_{IL} (1 of 2)

Parameter			Symbol	Min	Тур	Max	Unit
Input voltage (except for Schmitt trigger input pins) Peripheral function pin		V _{IH}	VCC × 0.8	_	_	٧	
		V _{IL}	_	_	VCC × 0.2		
			V _{IH}	2.1	_	VCC + 3.6 (max 5.8)	
			V _{IL}	_	_	0.8	

Note 2. Low CL crystal cannot be used below VBATT = 1.8V.

I/O V_{IH}, V_{IL} (2 of 2) Table 2.4

Parameter					Symbol	Min	Тур	Max	Unit
Schmitt trigger input voltage	Peripheral function pin	IIC (exce	ept for SMBus)		V _{IH}	VCC × 0.7	_	VCC + 3.6 (max 5.8)	V
						_	_	VCC × 0.3	1
					ΔV_{T}	VCC × 0.05	_	_	
		5 V-toler	ant ports ^{*1 *5}		V _{IH}	VCC × 0.8	_	VCC + 3.6 (max 5.8)	
					V _{IL}	_	_	VCC × 0.2	
					ΔV_T	VCC × 0.05	_	_	
		RTCIC0	Battery Backup	When VBATT power supply is	V _{IH}	V _{BATT} × 0.8	_	V _{BATT} + 0.3	
			Function	selected	V _{IL}	_	_	V _{BATT} × 0.2	
					ΔV _T	V _{BATT} × 0.05	_	_	
				When VCC power supply is selected	V _{IH}	VCC × 0.8	_	Higher voltage either VCC + 0.3 V or V _{BATT} + 0.3 V	-
					V _{IL}	_	_	VCC × 0.2	
					ΔV _T	VCC × 0.05	-	_	
			When not using the Function	e Battery Backup	V _{IH}	VCC × 0.8	_	VCC + 0.3	
					V _{IL}	_	_	VCC × 0.2	
					ΔV _T	VCC × 0.05	_	_	_
		Other inp	out pins ^{*2}		V _{IH}	VCC × 0.8	_	_	
					V _{IL}	_	_	VCC × 0.2	
					ΔV _T	VCC × 0.05	_	_	
	Ports	Ports 5 V-tolerant po		nt ports*3 *5		VCC × 0.8	_	VCC + 3.6 (max 5.8)	٧
					V _{IL}	_	_	VCC × 0.2	
		Other inp	out pins*4		V _{IH}	VCC × 0.8	_	_	
					V _{IL}	_	_	VCC × 0.2	1

Note 1. RES and peripheral function pins associated with Ports P205, P206, P400, P401, and P407 to P411 (total 10 pins).

Note 2. All input pins except for the peripheral function pins already described in the table.

Note 3. Ports P205, P206, P400, P401, and P407 to P411 (total 9 pins).

Note 4. All input pins except for the ports already described in the table.

Note 5. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur because 5 V-tolerant ports are electrically controlled so as not to violate the break down voltage.

2.2.3 I/O I_{OH}, I_{OL}

Table 2.5 I/O I_{OH}, I_{OL}

Parameter			Symbol	Min	Тур	Max	Unit
Permissible output current (average value per	Ports P000 to P004, P013 to P015,	_	I _{OH}	_	_	-2.0	mA
pin)	P201		I _{OL}	_	_	2.0	mA
	Ports P205, P206, P407 to P411 (total	Low drive*1	I _{OH}	_	_	-2.0	mA
	7 pins)		I _{OL}	_	_	2.0	mA
		Middle drive*2	I _{OH}	_	_	-4.0	mA
			I _{OL}	_	_	4.0	mA
		High drive*3	I _{OH}	_	_	-20	mA
			I _{OL}	_	_	20	mA
	Other output pins*4	Low drive*1	I _{OH}	_	_	-2.0	mA
			I _{OL}	_	_	2.0	mA
		Middle drive*2	I _{OH}	_	_	-4.0	mA
			I _{OL}	_	_	4.0	mA
		High drive*3	I _{OH}	_	_	-16	mA
			I _{OL}	_	_	16	mA
Permissible output current (max value per pin)	Ports P000 to P004, P013 to P015,	_	I _{OL} —	_	_	-4.0	mA
	P201			_	_	4.0	mA
		Low drive*1	Іон	_	_	-4.0	mA
	7 pins)		I _{OL}	_	_	4.0	mA
		Middle drive*2	Іон	_	_	-8.0	mA
			I _{OL}	_	_	8.0	mA
		High drive*3	Іон	_	_	-40	mA
			I _{OL}	_	_	40	mA
	Other output pins*4	Low drive*1	Іон	_	_	-4.0	mA
			I _{OL}	_	_	4.0	mA
		Middle drive*2	Іон	_	_	-8.0	mA
			I _{OL}	_	_	8.0	mA
		High drive*3	I _{OH}	_	_	-32	mA
			I _{OL}	_	_	32	mA
Permissible output current (maxvalue of total of	Maximum of all output pins		ΣI _{OH (max)}			-80	mA
all pins)			ΣI _{OL (max)}	_	_	80	mA

Note 1. This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 µs.

Note 2. This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

Note 3. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

Note 4. Except for P200, which is an input port.

2.2.4 I/O V_{OH} , V_{OL} , and Other Characteristics

Table 2.6 I/O V_{OH} , V_{OL} , and other characteristics

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Output voltage	IIC	V _{OL}	_	_	0.4	٧	I _{OL} = 3.0 mA
		V _{OL}	_	_	0.6		I _{OL} = 6.0 mA
	IIC*1	V _{OL}	_	_	0.4		I _{OL} = 15.0 mA (ICFER.FMPE = 1)
		V _{OL}	_	0.4	_		I _{OL} = 20.0 mA (ICFER.FMPE = 1)
	Ports P205, P206, P407 to P411 (total 7 pins)*2	V _{OH}	VCC - 1.0	_	_		I _{OH} = -20 mA VCC = 3.3 V
		V _{OL}	_	_	1.0		I _{OL} = 20 mA VCC = 3.3 V
	Other output pins	V _{OH}	VCC - 0.5	_	_		I _{OH} = -1.0 mA
		V _{OL}	_	_	0.5		I _{OL} = 1.0 mA
Input leakage current	RES	I _{in}	_	_	5.0	μΑ	V _{in} = 0 V V _{in} = 5.5 V
	Port P200		_	_	1.0		V _{in} = 0 V V _{in} = VCC
Three-state leakage current (off state)	5 V-tolerant ports	I _{TSI}	_	_	5.0	μΑ	V _{in} = 0 V V _{in} = 5.5 V
	Other ports (except for port P200)		_	_	1.0		V _{in} = 0 V V _{in} = VCC
Input pull-up MOS current	Ports P0 to P5	Ip	-300	_	-10	μΑ	VCC = 2.7 to 3.6 V V _{in} = 0 V
Input capacitance	USB_DP, USB_DM, and ports P014, P015, P400, P401	C _{in}	_	_	16	pF	Vbias = 0 V Vamp = 20 mV f = 1 MHz
	Other input pins		_	_	8		Ta = 25°C

Note 1. SCL0_A, SDA0_A (total 2 pins).

Note 2. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

2.2.5 Operating and Standby Current

Table 2.7 Operating and standby current (1 of 2)

Parameter					Symbol	Min	Тур	Max	Unit	Test conditions
Supply	High-speed	Maximum*2 *13			I _{CC} *3	-	_	65	mA	ICLK = 100 MHz
current*1	mode	CoreMark ^{®*5} *6	*12 *14			_	8.1	_		PCLKA = 100 MHz
		Normal mode	All peripher while (1) co	ral clocks enabled, ode executing from		-	15.4	_		PCLKB = 50 MHz PCLKC = 50 MHz
			while (1) co	All peripheral clocks disabled, while (1) code executing from flash*5 *6 *12 *14		_	6.1	_		PCLKD = 100 MHz FCLK = 50 MHz
		Sleep mode*5 *1	4			_	4.4 ^{*6} *12	25 ^{*7} *13	7	
		Increase during BGO operation Data flash Part Code flash F		P/E		_	6	_		
				P/E		_	8	_	1	
	Low-speed m					_	0.8	_	1	ICLK = 1 MHz
	Subosc-speed mode*5 *11					_	0.7	_		ICLK = 32.768 kHz
	Software Star	ndby mode	SNZCR.RX	DREQEN = 1		_	_	14	1	_
			SNZCR.RX	DREQEN = 0		_	0.7	_		_
	Deep Software	Power supplied resume detecting		SRAM and USB		_	16	96	μΑ	_
mode	Standby mode	Power not supplied to	Power-on r function dis	eset circuit low power abled		_	12	27		_
		SRAM or USB resume detecting unit	Power-on r function en	eset circuit low power abled		_	5	17		_
		Increase when the RTC and		ow-speed on-chip .OCO) is in use		_	4.4	-		_
		operating	When a cry	estal oscillator for low is in use		_	1.0	_		_
			When a crystal oscillator for standard clock loads is in use			_	1.6	_		_
	battery backu	RTC operating while VCC is off (with the battery backup function, only the RTC and				_	0.6	_		V _{BATT} = 1.8 V, VCC = 0 V
	SUD-Clock osc	illator operate)		clock loads is in use	_	_	1.2	-		V _{BATT} = 3.3 V, VCC = 0 V
				When a crystal oscillator for		_	1.1	_		V _{BATT} = 1.8 V, VCC = 0 V
				standard clock loads is in use		_	1.8	_		V _{BATT} = 3.3 V, VCC = 0 V
		t on returning from	deep	Inrush current*8	I _{RUSH}	_	160	_	mA	
	software stand	software standby mode Energy of it current*8			E _{RUSH}	_	1.0	_	μC	
Analog	During 12-bit A/D conversion					_	0.8	1.1	mA	_
power supply	During D/A co	onversion		Without AMP output		_	0.1	0.2	mA	_
current				With AMP output		_	0.6	1.1	mA	_
	Waiting for A/	D, D/A conversion					0.5	1.0	mA	_
	ADC12, DAC	12 in standby mod	es*9	es ^{*9}		_	0.4	4.0	μΑ	_

Table 2.7 Operating and standby current (2 of 2)

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Reference	During 12-bit A/D conversion		AI _{REFH0}	_	70	120	μΑ	_
power supply	Waiting for 12-bit A/D conversion	Waiting for 12-bit A/D conversion			0.07	0.5	μΑ	_
current (VREFH0)	ADC12 in standby modes		_	0.07	0.5	μΑ	_	
Reference	During D/A conversion	Without AMP output	Al _{REFH}	_	0.1	0.4	mA	_
power supply		With AMP ouput		_	0.1	0.4	mA	_
current (VREFH)	Waiting for D/A conversion		_	0.07	0.8	μΑ	_	
USB	Low speed	USB	I _{CCUSBLS}	_	3.5	6.5	mA	VCC_USB
operating current	Full speed	I _{CCUSBFS}	_	4.0	10.0	mA	VCC_USB	
LDOn operat	LDOn operating current (per unit)*15			_	0.18	_	mA	_
PLL2-LDO o	perating current		I _{CCPLL2LDO}	_	0.21	_	mA	_

- Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
- Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.
- Note 3. I_{CC} depends on f (ICLK) as follows.
 - I_{CC} Max. = 0.53 × f + 12 (max. operation in high-speed mode)
 - I_{CC} Typ. = 0.05 × f + 1.85 (normal operation in high-speed mode, all peripheral clocks disabled)
 - I_{CC} Typ. = 0.12 × f + 0.69 (low-speed mode)
 - I_{CC} Max. = 0.13 × f + 12 (sleep mode)
- Note 4. This does not include the BGO operation.
- Note 5. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.
- Note 6. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (1.563 MHz).
- Note 7. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.125 MHz).
- Note 8. Reference value
- Note 9. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-Bit A/D Converter 0 Module Stop bit) and MSTPCRD.MSTPD20 (12-bit D/A converter module stop bit) are in the module-stop state.
- Note 10. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (15.6 kHz).
- Note 11. PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (512 Hz). FCLK is the same frequency as that of ICLK.
- Note 12. PLL output frequency = 100MHz.
- Note 13. PLL output frequency = 200MHz.
- Note 14. PLL2-LDO disabled.
- Note 15. n = 0, 1

Table 2.8 Coremark and normal mode current

Parameter			Symbol	Тур	Unit	Test conditions
Supply Current*1	10.10.11	Icc	81 60	μA/MHz	ICLK = 100MHz PCLKA = PCLKB = PCLKC = PCLKD = FCLK = 1.56 MHz	
		All peripheral clocks disabled, cache off, while (1) code executing from flash*2 *3 *4		118		

- Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
- Note 2. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.
- Note 3. PLL output frequency = 100MHz.
- Note 4. PLL2-LDO disabled.

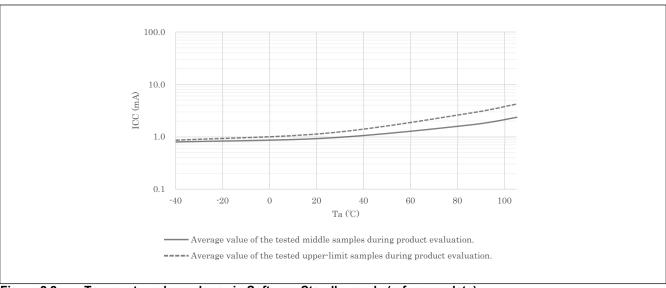


Figure 2.2 Temperature dependency in Software Standby mode (reference data)

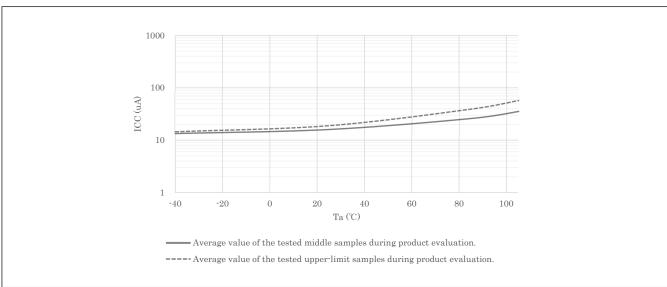


Figure 2.3 Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM and USB resume detecting unit (reference data)

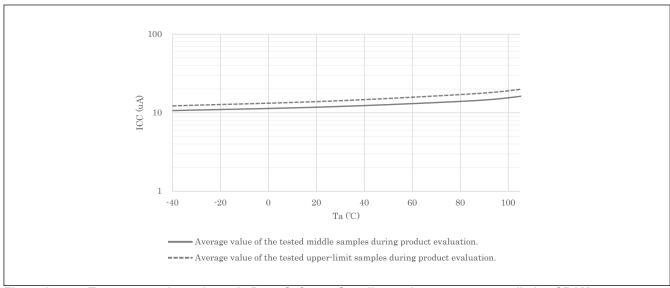


Figure 2.4 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB resume detecting unit, power-on reset circuit low power function disabled (reference data)

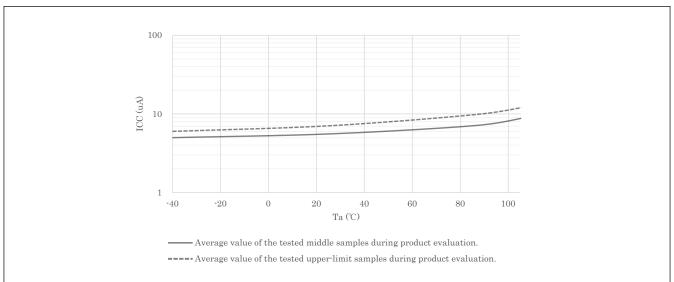


Figure 2.5 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB resume detecting unit, power-on reset circuit low power function enabled (reference data)

2.2.6 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.9 Rise and fall gradient characteristics

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
VCC rising gradient	Voltage monitor 0 reset disabled at startup	SrVCC	0.0084	_	20	ms/V	_
	Voltage monitor 0 reset enabled at startup		0.0084	_	_		_
	SCI/USB boot mode*1		0.0084	_	20		_
VCC falling gradient*2		SfVCC	0.0084	_	_	ms/V	_

Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.

Note 2. This applies when VBATT is used.

Table 2.10 Rising and falling gradient and ripple frequency characteristics

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (3.6 V) and lower limit (2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r (VCC)}	_	_	10	kHz	Figure 2.6 V _{r (VCC)} ≤ VCC × 0.2
		_	_	1	MHz	Figure 2.6 V _{r (VCC)} ≤ VCC × 0.08
		_	_	10	MHz	Figure 2.6 V _{r (VCC)} ≤ VCC × 0.06
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	_	_	ms/V	When VCC change exceeds VCC ±10%

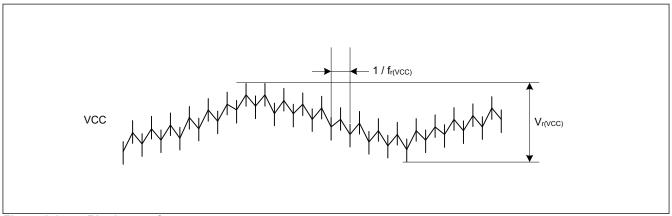


Figure 2.6 Ripple waveform

2.2.7 Thermal Characteristics

Maximum value of junction temperature (Tj) must not exceed the value of "section 2.2.1. Tj/Ta Definition".

Tj is calculated by either of the following equations.

- $Tj = Ta + \theta ja \times Total power consumption$
- $Tj = Tt + \Psi jt \times Total power consumption$
 - Tj : Junction Temperature (°C)
 - Ta : Ambient Temperature (°C)
 - Tt: Top Center Case Temperature (°C)
 - θja : Thermal Resistance of "Junction"-to-"Ambient" (°C/W)
 - Ψjt : Thermal Resistance of "Junction"-to-"Top Center Case" (°C/W)
- Total power consumption = Voltage × (Leakage current + Dynamic current)
- Leakage current of IO = $\Sigma (I_{OL} \times V_{OL}) / Voltage + \Sigma (|I_{OH}| \times |VCC V_{OH}|) / Voltage$
- Dynamic current of IO = Σ IO ($C_{in} + C_{load}$) × IO switching frequency × Voltage
 - Cin: Input capacitance
 - C_{load}: Output capacitance

Regarding θ ja and Ψ jt, refer to Table 2.11.

Table 2.11 Thermal Resistance

Parameter	Package	Symbol	Value*1	Unit	Test conditions
Thermal	48-pin QFN (PWQN0048KC-A)	θja 2	23.9	°C/W	JESD 51-2 and 51-7
Resistance	64-pin LQFP (PLQP0064KB-C)		54.6		compliant
	48-pin QFN (PWQN0048KC-A)	Ψjt	0.28	°C/W	JESD 51-2 and 51-7
	64-pin LQFP (PLQP0064KB-C)		1.90		compliant

Note 1. The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of the board. For details, refer to the JEDEC standards.

2.2.7.1 Calculation guide of I_{CC}max

Table 2.12 shows the power consumption of each unit.

Table 2.12 Power consumption of each unit

Dynamic current/ Leakage current	MCU Domain	Category	Item	Frequency [MHz]	Current [uA/MHz]	Current*1 [mA]
Leakage current	Analog	LDO and Leak*2	Ta = 75 °C*3	_	_	7.82
			Ta = 85 °C*3	_	_	9.13
Dynamic current	CPU	Operation with Flash and SRAM	Coremark	100	55.556	5.56
	Peripheral Unit	Timer	GPT16 (2ch)*4	100	1.788	0.18
			GPT32 (2ch)*4	100	2.115	0.21
			POEG (4 Groups)	50	1.361	0.07
			AGT (6ch)*4	50	9.228	0.46
			RTC	50	4.277	0.21
			WDT	50	0.764	0.04
			IWDT	50	0.339	0.02
		Communication	USBFS	50	9.385	0.47
		interfaces	SCI (4ch)*4	100	12.477	1.25
			IIC	50	1.684	0.08
			CAN	50	1.898	0.09
			SPI	100	3.024	0.30
			QSPI	100	2.051	0.21
		Analog	ADC12	100	2.287	0.23
			DAC12	100	0.435	0.05
		Event link	ELC	50	0.865	0.04
		Security	SCE9	100	218.100	21.81
		Data processing	CRC	100	0.600	0.06
			DOC	100	0.388	0.04
		System	CAC	50	0.844	0.04
		DMA	DMAC	100	4.479	0.45
			DTC	100	4.274	0.43

Note 1. The values are guaranteed by design.

Note 2. LDO and Leak are internal voltage regulator's current and MCU's leakage current.

It is selected according to the temperature of Ta.

Note 3. $\Delta(Tj-Ta) = 20$ °C is considered to measure the current.

Note 4. To determine the current consumption per channel, group or unit, divide Current [mA] by the number of channels, groups or units.

Table 2.13 shows the outline of operation for each unit.

Table 2.13 Outline of operation for each unit

Peripheral	Outline of operation
GPT	
GPT	Operating modes is set to saw-wave PWM mode. GPT is operating with PCLKD.
POEG	Only clear module stop bit.
AGT	AGT is operating with PCLKB.
RTC	RTC is operating with LOCO.
WDT	WDT is operating with PCLKB.
IWDT	IWDT is operating with IWDTCLK.
USBFS	Transfer types is set to bulk transfer. USBFS is operating using Full-speed transfer (12 Mbps).
SCI	SCI is transmitting data in clock synchronous mode.
IIC	Communication format is set to I2C-bus format. IIC is transmitting data in master mode.
CAN	CAN is transmitting and receiving data in self-test mode 1.
SPI	SPI mode is set to SPI operation (4-wire method). SPI master/slave mode is set to master mode. SPI is transmitting 8-bit width data.
QSPI	QSPI is issuing Fast Read Quad I/O Instruction.
ADC12	Resolution is set to 12-bit accuracy. Data registers is set to A/D-converted value addition mode. ADC12 is converting the analog input in continuous scan mode.
DAC12	DAC12 is outputting the conversion result while updating the value of data register.
ELC	Only clear module stop bit.
SCE9	SCE9 is executing built-in self test.
CRC	CRC is generating CRC code using 32-bit CRC32-C polynomial.
DOC	DOC is operating in data addition mode.
CAC	Measurement target clocks is set to PCLKB. Measurement reference clocks is set to PCLKB. CAC is measuring the clock frequency accuracy.
DMAC	Bit length of transfer data is set to 32 bits. Transfer mode is set to block transfer mode. DMAC is transferring data from SRAM0 to SRAM0.
DTC	Bit length of transfer data is set to 32 bits. Transfer mode is set to block transfer mode. DTC is transferring data from SRAM0 to SRAM0.

2.2.7.2 Example of T_i calculation

Assumption:

- Package 64-pin LQFP : θ ja = 54.6 °C/W
- Ta = 80 °C
- I_{CC} max = 40 mA
- VCC = 3.5 V (VCC = AVCC = VCC_USB)
- $I_{OH} = 1 \text{ mA}$, $V_{OH} = VCC 0.5 \text{ V}$, 12 Outputs
- $I_{OL} = 20 \text{ mA}, V_{OL} = 1.0 \text{ V}, 8 \text{ Outputs}$
- $I_{OL} = 1 \text{ mA}$, $V_{OL} = 0.5 \text{ V}$, 12 Outputs
- $C_{in} = 8 \text{ pF}$, 16 pins, Input frequency = 10 MHz

• C_{load} = 30 pF, 16 pins, Output frequency = 10 MHz

Leakage current of IO =
$$\Sigma$$
 (V_{OL} × I_{OL}) / Voltage + Σ ((VCC - V_{OH}) × I_{OH}) / Voltage
= $(20 \text{ mA} \times 1 \text{ V}) \times 8 / 3.5 \text{ V} + (1 \text{ mA} \times 0.5 \text{ V}) \times 12 / 3.5 \text{ V} + ((VCC - (VCC - 0.5 \text{ V})) \times 1 \text{ mA}) \times 12 / 3.5 \text{ V}$
= $45.7 \text{ mA} + 1.71 \text{ mA} + 1.71 \text{ mA}$
= 49.1 mA
Dynamic current of IO = Σ IO (C_{in} + C_{load}) × IO switching frequency × Voltage
= $((8 \text{ pF} \times 16) \times 10 \text{ MHz} + (30 \text{ pF} \times 16) \times 10 \text{ MHz}) \times 3.5 \text{ V}$
= 21.3 mA
Total power consumption = $(I_{CC} \text{max} \times \text{Voltage}) + (\text{Leakage current of IO} + \text{Dynamic current of IO}) \times \text{Voltage}$
= $(40 \text{ mA} \times 3.5 \text{ V}) + (49.1 \text{ mA} + 21.3 \text{ mA}) \times 3.5 \text{ V}$
= $386 \text{ mW} (0.386 \text{ W})$
Tj = Ta + θ ja × Total power consumption
= $80 \text{ °C} + 54.6 \text{ °C/W} \times 0.386 \text{W}$
= 101.1 °C

2.3 AC Characteristics

2.3.1 Frequency

Table 2.14 Operation frequency value in high-speed mode

Parameter		Symbol	Min	Тур	Max	Unit
Operation frequency	System clock (ICLK)	f	_	_	100	MHz
	Peripheral module clock (PCLKA)		_	_	100	
	Peripheral module clock (PCLKB)		_	_	50	
	Peripheral module clock (PCLKC)		*2	_	50	
	Peripheral module clock (PCLKD)		_	_	100	
	Flash interface clock (FCLK)		*1	_	50	

- Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.
- Note 2. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.

Table 2.15 Operation frequency value in low-speed mode

Parameter		Symbol	Min	Тур	Max	Unit
Operation frequency	System clock (ICLK)	f	_	_	1	MHz
	Peripheral module clock (PCLKA)		_	_	1	
	Peripheral module clock (PCLKB)		_	_	1	
	Peripheral module clock (PCLKC) *2		*2	_	1	
	Peripheral module clock (PCLKD)		_	_	1	
	Flash interface clock (FCLK)*1		_	_	1	

- Note 1. Programming or erasing the flash memory is disabled in low-speed mode.
- Note 2. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.

Table 2.16 Operation frequency value in Subosc-speed mode

Parameter	Parameter			Тур	Max	Unit
Operation frequency	f	29.4	_	36.1	kHz	
Peripheral module clock (PCLKA)]	_	_	36.1	
Peripheral module clock (PCLKB)]	_	_	36.1	
	Peripheral module clock (PCLKC) *2		_	_	36.1	
	Peripheral module clock (PCLKD)]	_	_	36.1	
	Flash interface clock (FCLK)*1		29.4	_	36.1	

Note 1. Programming or erasing the flash memory is disabled in Subosc-speed mode. Note 2. The ADC12 cannot be used.

2.3.2 **Clock Timing**

Table 2.17 Clock timing except for sub-clock oscillator (1 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
EXTAL external clock input cycle tin	пе	t _{EXcyc}	41.66	_	_	ns	Figure 2.7
EXTAL external clock input high pul	se width	t _{EXH}	15.83	_	_	ns	
EXTAL external clock input low puls	t _{EXL}	15.83	_	_	ns		
EXTAL external clock rise time	t _{EXr}	_	_	5.0	ns		
EXTAL external clock fall time		t _{EXf}	_	_	5.0	ns	
Main clock oscillator frequency		f _{MAIN}	8	_	24	MHz	_
Main clock oscillation stabilization w	ait time (crystal)*1	t _{MAINOSCWT}	_	_	*1	ms	Figure 2.8
LOCO clock oscillation frequency		f _{LOCO}	29.4912	32.768	36.0448	kHz	_
LOCO clock oscillation stabilization wait time		t _{LOCOWT}	_	_	60.4	μs	Figure 2.9
ILOCO clock oscillation frequency		f _{ILOCO}	13.5	15	16.5	kHz	_
MOCO clock oscillation frequency		F _{MOCO}	6.8	8	9.2	MHz	_
MOCO clock oscillation stabilization	wait time	t _{MOCOWT}	_	_	15.0	μs	_
HOCO clock oscillator oscillation	Without FLL	f _{HOCO16}	15.78	16	16.22	MHz	–20 ≤ Ta ≤ 85°C
frequency		f _{HOCO18}	17.75	18	18.25		
		f _{HOCO20}	19.72	20	20.28		
		f _{HOCO16}	15.71	16	16.29		–40 ≤ Ta ≤ –20°C
		f _{HOCO18}	17.68	18	18.32		
		f _{HOCO20}	19.64	20	20.36		
	With FLL	f _{HOCO16}	15.960	16	16.040		–40 ≤ Ta ≤ 85°C
		f _{HOCO18}	17.955	18	18.045		Sub-clock frequency accuracy is ±50 ppm.
		f _{HOCO20}	19.950	20	20.050		
HOCO clock oscillation stabilization	wait time*2	t _{HOCOWT}	_	_	64.7	μs	_
HOCO period jitter		_	_	±85	_	ps	_
FLL stabilization wait time		t _{FLLWT}	_	_	1.8	ms	_
PLL clock frequency	f _{PLL}	100		200	MHz	1	
PLL2 clock frequency	PLL2 clock frequency				240	MHz	_
PLL/PLL2 clock oscillation stabilizat	ion wait time	t _{PLLWT}	_		174.9	μs	Figure 2.10

Table 2.17 Clock timing except for sub-clock oscillator (2 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
PLL/PLL2 period jitter		_	_	±100	_	ps	_
	f _{PLL} , f _{PLL2} < 120MHz	_	_	±120	_	ps	_
PLL/PLL2 long term jitter		_	_	±300	_	ps	Term: 1µs, 10µs

- Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended value.
 - After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm that it is 1, and then start using the main clock oscillator.
- Note 2. This is the time from release from reset state until the HOCO oscillation frequency (f_{HOCO}) reaches the range for guaranteed operation.

Table 2.18 Clock timing for the sub-clock oscillator

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Sub-clock frequency	f _{SUB}	_	32.768	_	kHz	_
Sub-clock oscillation stabilization wait time	t _{SUBOSCWT}	_	_	*1	s	Figure 2.11

Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the recommended oscillation stabilization time.

After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is recommended.

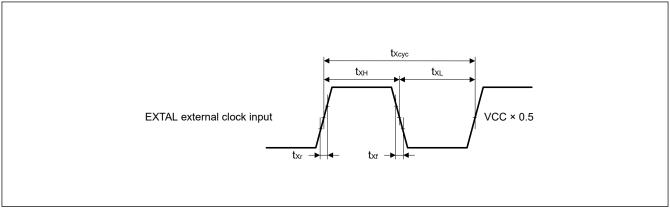


Figure 2.7 EXTAL external clock input timing

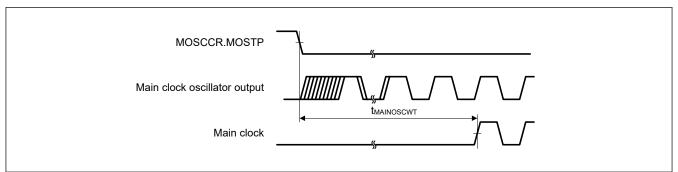


Figure 2.8 Main clock oscillation start timing

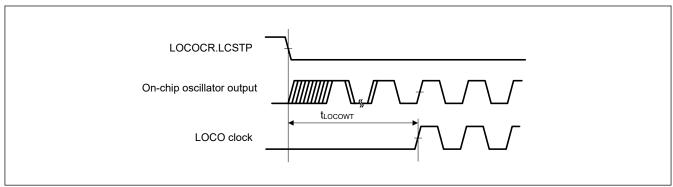


Figure 2.9 LOCO clock oscillation start timing

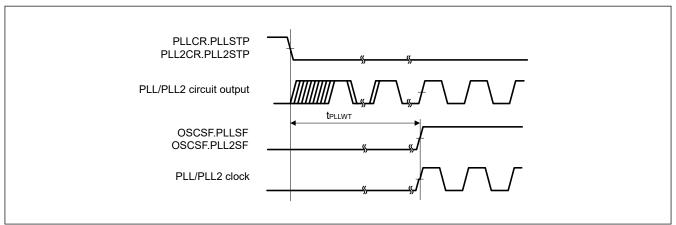


Figure 2.10 PLL/PLL2 clock oscillation start timing

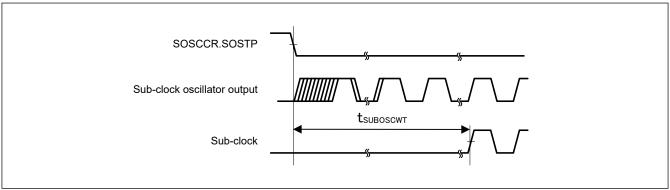


Figure 2.11 Sub-clock oscillation start timing

2.3.3 Reset Timing

Table 2.19 Reset timing (1 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	
RES pulse width Power-on			0.7	_	_	ms	Figure 2.12
	Deep Software Standby mode	t _{RESWD}	0.6	_	_	ms	Figure 2.13
	Software Standby mode, Subosc-speed mode	t _{RESWS}	0.3	_	_	ms	
	All other	t _{RESW}	200	_	_	μs	
Wait time after RES cancellation			_	37.3	41.2	μs	Figure 2.12

Table 2.19 Reset timing (2 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Wait time after internal reset cancellation (IWDT reset, WDT reset, software reset, SRAM parity error reset, bus master MPU error reset, TrustZone error reset)	t _{RESW2}	_	324	397.7	μs	_

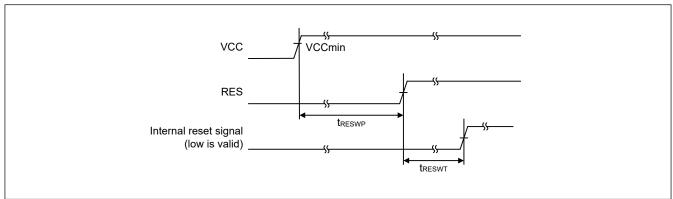


Figure 2.12 RES pin input timing under the condition that VCC exceeds V_{POR} voltage threshold

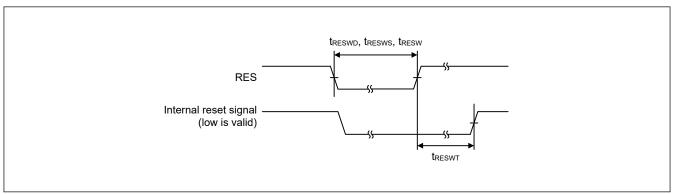


Figure 2.13 Reset input timing

2.3.4 Wakeup Timing

Table 2.20 Timing of recovery from low power modes (1 of 2)

Parameter	Parameter					Max	Unit	Test conditions
Software Standby mode*1 connected to ma oscillator	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator*2	t _{SBYMC} *13	_	2.1	2.4	ms	Figure 2.14 The division ratio of all oscillators is 1.
		System clock source is PLL with main clock oscillator*3	t _{SBYPC} *13	_	2.2	2.6	ms	OSCIIIALOIS IS 1.
	External clock input to main clock oscillator	System clock source is main clock oscillator*4	t _{SBYEX} *13	_	45	125	μs	
		System clock source is PLL with main clock oscillator*5	t _{SBYPE} *13	_	170	255	μs	6
	System clock source is su	b-clock oscillator*6 *11	t _{SBYSC} *13	_	0.7	0.8	ms	
	System clock source is LC	OCO*7 *11	t _{SBYLO} *13	_	0.7	0.9	ms	
	System clock source is H0	System clock source is HOCO clock oscillator*8			55	130	μs	
	System clock source is PLL with HOCO*9		t _{SBYPH} *13	_	175	265	μs	
	System clock source is MOCO clock oscillator*10		t _{SBYMO} *13	_	35	65	μs	

Table 2.20 Timing of recovery from low power modes (2 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	
Recovery time from Deep Software	DPSBYCR.DEEPCUT[1] = 0 and DPSWCR.WTSTS[5:0] = 0x0E	t _{DSBY}	-	0.38	0.54	ms	Figure 2.15
Standby mode	DPSBYCR.DEEPCUT[1] = 1 and DPSWCR.WTSTS[5:0] = 0x19	t _{DSBY}	_	0.55	0.73	ms	
Wait time after cancel	lation of Deep Software Standby mode	t _{DSBYWT}	56	_	57	t _{cyc}	
Recovery time from Software Standby	High-speed mode when system clock source is HOCO (20 MHz)	t _{SNZ}	_	35 ^{*12}	70 ^{*12}	μs	Figure 2.16
mode to Snooze mode	High-speed mode when system clock source is MOCO (8 MHz)	t _{SNZ}	_	11*12	14*12	μs	

- Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined with the following equation:
 - Total recovery time = recovery time for an oscillator as the system clock source + the longest tSBYOSCWT in the active oscillators tSBYOSCWT for the system clock + 2 LOCO cycles (when LOCO is operating) + Subosc is oscillating and MSTPC0 = 0 (CAC module stop))
- Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05) and the greatest value of the internal clock division setting is 1.
- Note 3. When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05) and the greatest value of the internal clock division setting is 4.
- Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and the greatest value of the internal clock division setting is 1.
- Note 5. When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and the greatest value of the internal clock division setting is 4.
- Note 6. The Sub-clock oscillator frequency is 32.768 KHz and the greatest value of the internal clock division setting is 1.
- Note 7. The LOCO frequency is 32.768 kHz and the greatest value of the internal clock division setting is 1.
- Note 8. The HOCO frequency is 20 MHz and the greatest value of the internal clock division setting is 1.
- Note 9. The PLL frequency is 200 MHz and the greatest value of the internal clock division setting is 4.
- Note 10. The MOCO frequency is 8 MHz and the greatest value of the internal clock division setting is 1.
- Note 11. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.
- Note 12. When the SNZCR RXDREQEN bit is set to 0, the following time is added as the power supply recovery time: 16 µs (typical), 48 µs (maximum).
- Note 13. The recovery time can be calculated with the equation of tSBYOSCWT + tSBYSEQ. And they can be determined with the following value and equation. For n, the greatest value is selected from among the internal clock division settings.

Wakeup time	ТҮР		MAX		Unit
	tSBYOSCWT	tSBYSEQ	tSBYOSCWT	tSBYSEQ	
tSBYMC	(MSTS[7:0]*32 + 3) / 0.262	35 + 18 / flCLK + 4n / fMAIN	(MSTS[7:0]*32 + 14 / 0.236	62 + 18 / fICLK + 4n / fMAIN	μs
tSBYPC	(MSTS[7:0]*32 + 34) / 0.262	35 + 18 / flCLK + 4n / fPLL	(MSTS[7:0]*32 + 45) / 0.236	62 + 18 / flCLK + 4n / fPLL	μs
tSBYEX	10	35 + 18 / flCLK + 4n / fEXMAIN	62	62 + 18 / flCLK + 4n / fEXMAIN	μs
tSBYPE	135	35 + 18 / flCLK + 4n / fPLL	192	62 + 18 / flCLK + 4n / fPLL	μs
tSBYSC	0	35 + 18 / flCLK + 4n / fSUB	0	62 + 18 / flCLK + 4n / fSUB	μs
tSBYLO	0	35 + 18 / flCLK + 4n / fLOCO	0	62 + 18 / flCLK + 4n / fLOCO	μs
tSBYHO	20	35 + 18 / flCLK + 4n / fHOCO	67	62 + 18 / flCLK + 4n / fHOCO	μs
tSBYPH	140	35 + 18 / flCLK + 4n / fPLL	202	62 + 18 / flCLK + 4n / fPLL	μs
tSBYMO	0	35 + 18 / flCLK + 4n / fMOCO	0	62 + 18 / flCLK + 4n / fMOCO	μs

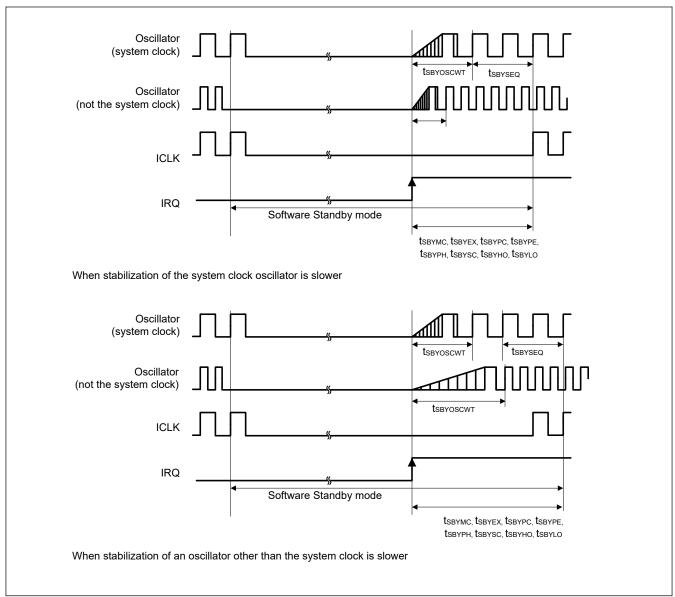


Figure 2.14 Software Standby mode cancellation timing

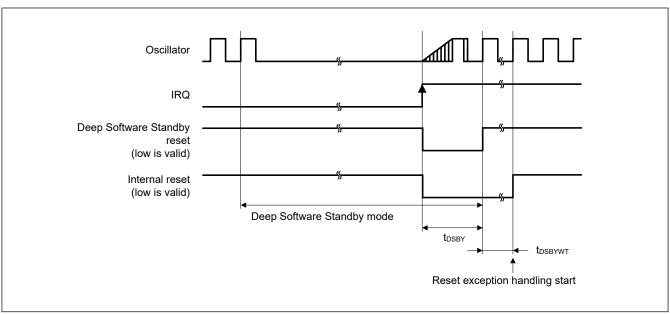


Figure 2.15 Deep Software Standby mode cancellation timing

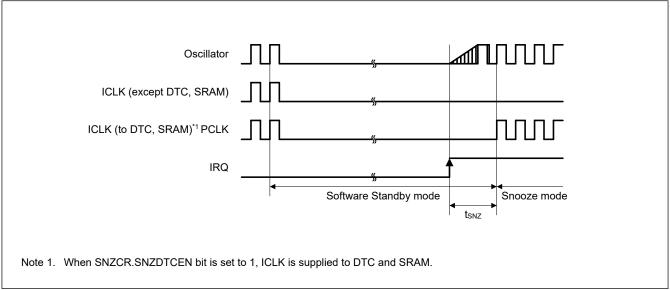


Figure 2.16 Recovery timing from Software Standby mode to Snooze mode

2.3.5 NMI and IRQ Noise Filter

Table 2.21 NMI and IRQ noise filter

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions				
NMI pulse width	t _{NMIW}	200	_	_	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns			
wiatri		t _{Pcyc} × 2*1	_	_		disabled	t _{Pcyc} × 2 > 200 ns			
		200	_	_		NMI digital filter	t _{NMICK} × 3 ≤ 200 ns			
		t _{NMICK} × 3.5*2	_	_		enabled	t _{NMICK} × 3 > 200 ns			
IRQ pulse width	t _{IRQW}	200	_	_	ns	IRQ digital filter	t _{Pcyc} × 2 ≤ 200 ns			
Width		t _{Pcyc} × 2*1	_	_		disabled	t _{Pcyc} × 2 > 200 ns			
		200	_	_		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns			
		t _{IRQCK} × 3.5 ^{*3}	_	_		CHADICU	t _{IRQCK} × 3 > 200 ns			

Note: 200 ns minimum in Software Standby mode.

Note: If the clock source is switched, add 4 clock cycles of the switched source.

Note 1. t_{Pcvc} indicates the PCLKB cycle.

Note 2. t_{NMICK} indicates the cycle of the NMI digital filter sampling clock. Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock.

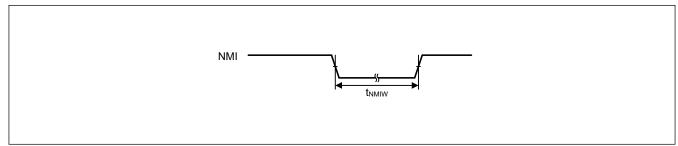


Figure 2.17 NMI interrupt input timing

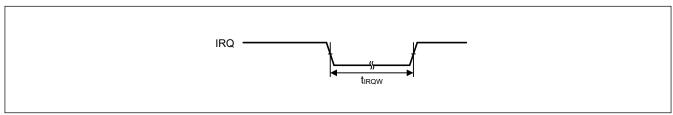


Figure 2.18 IRQ interrupt input timing

2.3.6 I/O Ports, POEG, GPT, AGT, and ADC12 Trigger Timing

Table 2.22 I/O ports, POEG, GPT, AGT, and ADC12 trigger timing

GPT32 Conditions:

High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

AGT Conditions:

Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter			Symbol	Min	Max	Unit	Test conditions	
I/O ports	Input data pulse width		t _{PRW}	1.5	_	t _{Pcyc}	Figure 2.19	
POEG	POEG input trigger pulse widt	h	t _{POEW}	3	_	t _{Pcyc}	Figure 2.20	
GPT	Input capture pulse width	Single edge	t _{GTICW}	1.5	_	t _{PDcyc}	Figure 2.21	
		Dual edge		2.5	_			
	GTIOCxY output skew	Middle drive buffer	t _{GTISK} *1	_	4	ns	Figure 2.22	
	(x = 1, 2, Y = A or B)	High drive buffer		_	4			
	GTIOCxY output skew (x = 4, 5, Y = A or B)	Middle drive buffer		_	4			
		High drive buffer		_	4			
	GTIOCxY output skew	Middle drive buffer		_	6			
	(x = 1, 2, 4, 5, Y = A or B)	High drive buffer		_	6			
AGT	AGTIO, AGTEE input cycle	AGTIO, AGTEE input cycle			_	ns	Figure 2.23	
	AGTIO, AGTEE input high wic	AGTIO, AGTEE input high width, low width			-	ns		
	AGTIO, AGTO, AGTOA, AGT	AGTIO, AGTO, AGTOA, AGTOB output cycle			_	ns	7	
ADC12	ADC12 trigger input pulse wid	ADC12 trigger input pulse width		1.5	_	t _{Pcyc}	Figure 2.24	

Note: t_{Pcyc} : PCLKB cycle, t_{PDcyc} : PCLKD cycle.

Note 1. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed.

Note 2. Constraints on input cycle:

When not switching the source clock: $t_{Pcyc} \times 2 < t_{ACYC}$ should be satisfied.

When switching the source clock: $t_{Pcyc} \times 6 < t_{ACYC}$ should be satisfied.

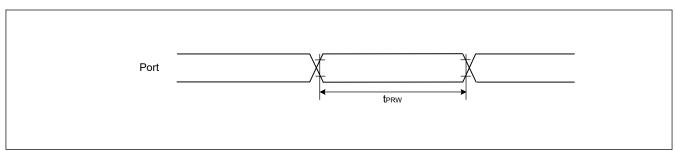


Figure 2.19 I/O ports input timing

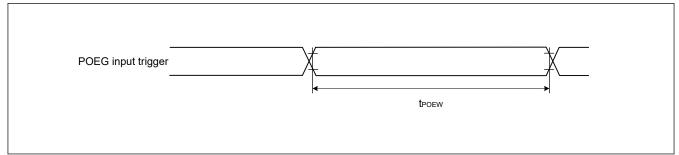


Figure 2.20 POEG input trigger timing

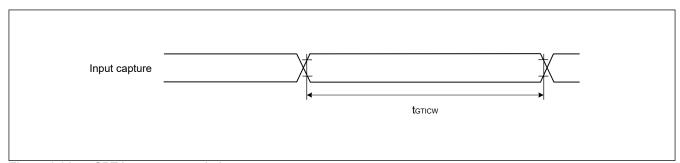


Figure 2.21 GPT input capture timing

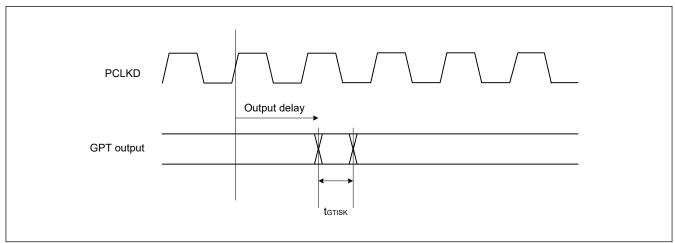


Figure 2.22 GPT output delay skew

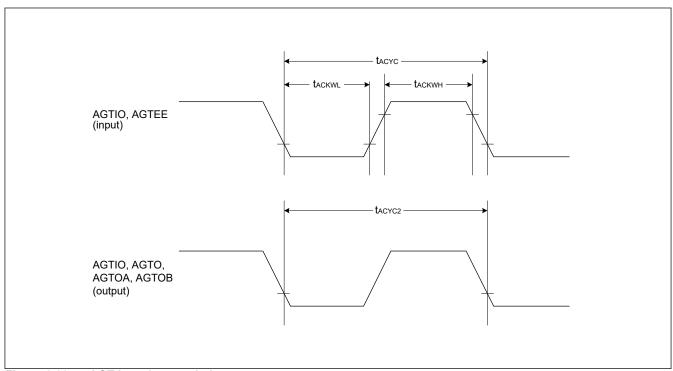


Figure 2.23 AGT input/output timing

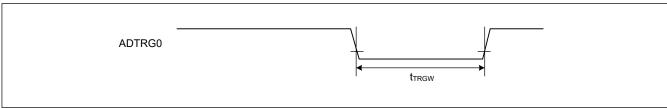


Figure 2.24 ADC12 trigger input timing

2.3.7 CAC Timing

Table 2.23 CAC timing

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
CAC	CACREF input pulse width	t _{PBcyc} ≤ t _{cac} *1	t _{CACREF}	$4.5 \times t_{cac} + 3 \times t_{PBcyc}$	_	_	ns	_
	Width	t _{PBcyc} > t _{cac} *1		$5 \times t_{cac} + 6.5 \times t_{PBcyc}$	_	_	ns	

Note: t_{PBcyc} : PCLKB cycle.

Note 1. t_{cac} : CAC count clock source cycle.

2.3.8 SCI Timing

Table 2.24 SCI timing (1)

Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Para	ameter		Symbol	Min	Max	Unit	Test conditions
SCI	Input clock cycle	Asynchronous	t _{Scyc}	4	_	t _{Pcyc}	Figure 2.25
		Clock synchronous	1	6	_		
	Input clock pulse width		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time		t _{SCKr}	_	5	ns	
	Input clock fall time		t _{SCKf}	_	5	ns	
	Output clock cycle	Asynchronous	t _{Scyc}	6 (other than SCI1, SCI2) 8 (SCI1, SCI2)	_	t _{Pcyc}	
		Clock synchronous	1	4	-		
	Output clock pulse width		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time			_	5	ns	
	Output clock fall time		t _{SCKf}	_	5	ns	
	Transmit data delay	Clock synchronous master mode (internal clock)	t _{TXD}	_	5	ns	Figure 2.26
		Clock synchronous slave mode (external clock)	t _{TXD}	_	25	ns	
	Receive data setup time	Clock synchronous master mode (internal clock)	t _{RXS}	15	_	ns	
		Clock synchronous slave mode (external clock)	t _{RXS}	5	_	ns	
	Receive data hold time	Clock synchronous	t _{RXH}	5	-	ns	

Note: t_{Pcyc} : PCLKA cycle.

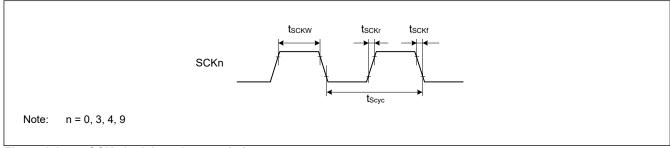


Figure 2.25 SCK clock input/output timing

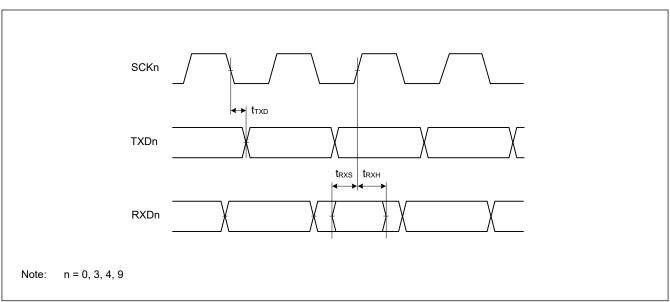


Figure 2.26 SCI input/output timing in clock synchronous mode

Table 2.25 SCI timing (2)

Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter			Symbol	Min	Max	Unit	Test conditions
Simple SPI	SCK clock cycle output (master	-)	t _{SPcyc}	4	65536	t _{Pcyc}	Figure 2.27
	SCK clock cycle input (slave)			6	65536]	
	SCK clock high pulse width		t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK clock low pulse width		t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise and fall time		t _{SPCKr} , t _{SPCKf}	-	5	ns	
	Data input setup time	master	t _{SU} 1	15	_	ns	Figure 2.28 to Figure
		slave		5	_	ns	2.31
	Data input hold time		t _H	5	_	ns	
	SS input setup time		t _{LEAD}	1	_	t _{SPcyc}	
	SS input hold time		t _{LAG}	1	_	t _{SPcyc}	
	Data output delay	master	t _{OD}	-	5	ns	
		slave		_	25	ns	
	Data output hold time		t _{OH}	-5	_	ns	
	Data rise and fall time		t _{Dr} , t _{Df}	_	5	ns	
	SS input rise and fall time		t _{SSLr} , t _{SSLf}	_	5	ns	
	Slave access time		t _{SA}	_	3 × t _{Pcyc} + 25	ns	Figure 2.31
	Slave output release time		t _{REL}	_	3 × t _{Pcyc} + 25	ns	

Note: t_{Pcyc}: PCLKA cycle.

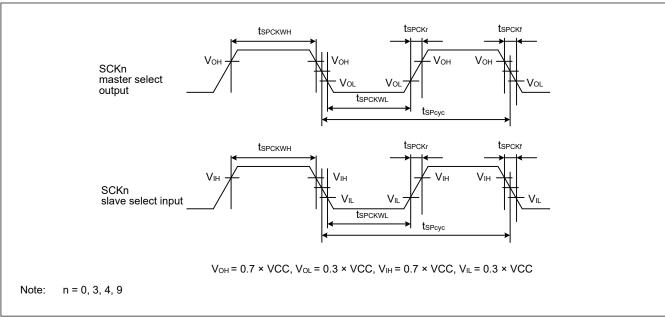


Figure 2.27 SCI simple SPI mode clock timing

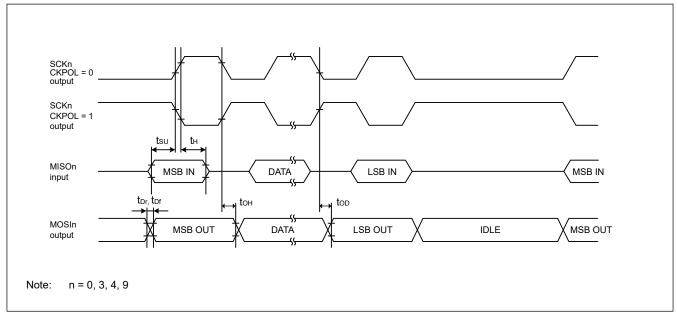


Figure 2.28 SCI simple SPI mode timing for master when CKPH = 1

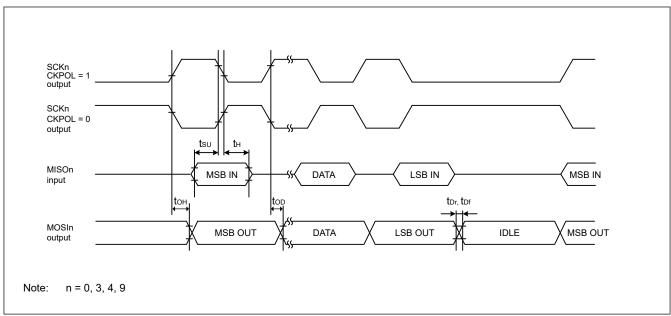


Figure 2.29 SCI simple SPI mode timing for master when CKPH = 0

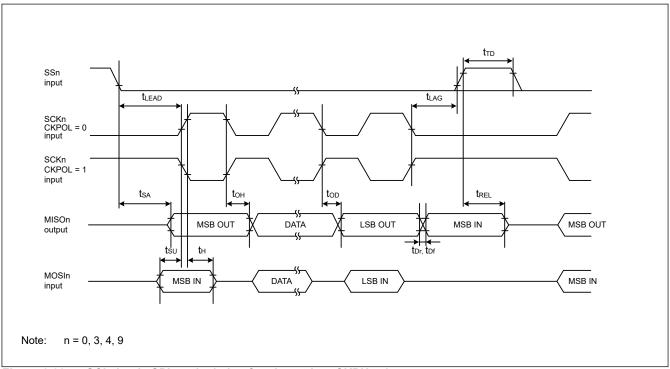


Figure 2.30 SCI simple SPI mode timing for slave when CKPH = 1

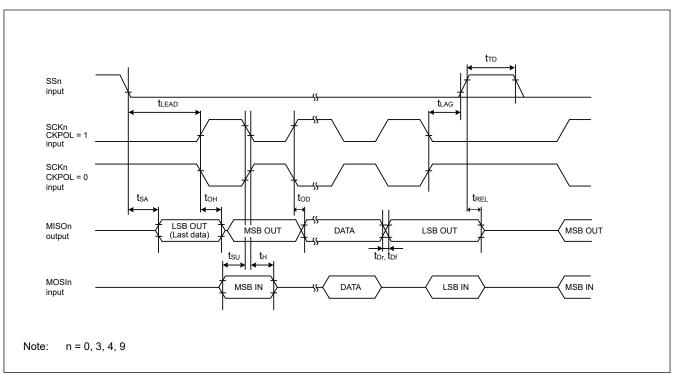


Figure 2.31 SCI simple SPI mode timing for slave when CKPH = 0

Table 2.26 SCI timing (3)

Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter		Symbol	Min	Max	Unit	Test conditions
Simple IIC	SDA input rise time	t _{Sr}	_	1000	ns	Figure 2.32
(Standard mode)	SDA input fall time	t _{Sf}	_	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	250	_	ns	
	Data input hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b *1	_	400	pF	
Simple IIC	SDA input rise time	t _{Sr}	_	300	ns	Figure 2.32
(Fast mode)	SDA input fall time	t _{Sf}	_	300	ns	
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc}	ns	
	Data input setup time	t _{SDAS}	100	_	ns	
	Data input hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b *1	_	400	pF	

Note: t_{IICcyc} : IIC internal reference clock (IIC ϕ) cycle. Note 1. C_b indicates the total capacity of the bus line.

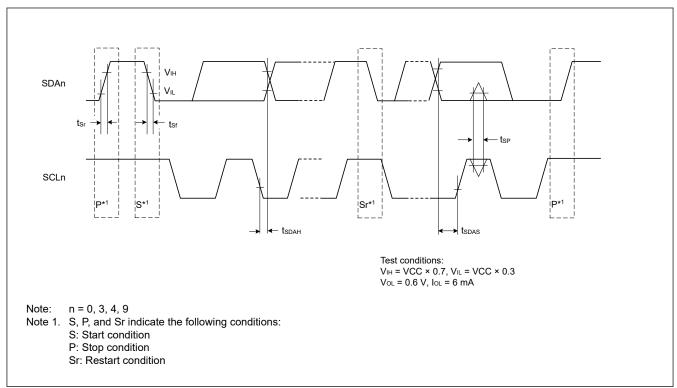


Figure 2.32 SCI simple IIC mode timing

2.3.9 SPI Timing

Table 2.27 SPI timing

Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

an	neter		Symbol	Min	Max	Unit	Test conditions	
	RSPCK clock cycle	Master	t _{SPcyc}	2	4096	t _{Pcyc}	Figure 2.33	
		Slave		4	4096	1		
	RSPCK clock high pulse width	Master	tspckwh	(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 3	_	ns		
		Slave		0.4	0.6	t _{SPcyc}		
	RSPCK clock low pulse width	Master	tspckwl	(t _{SPcyc} - t _{SPCKr} - t _{SPCKf}) / 2 - 3	_	ns		
		Slave		0.4	0.6	t _{SPcyc}		
	RSPCK clock rise and	Master	t _{SPCKr} , t _{SPCKf}	_	5	ns		
	fall time	Slave		_	1	μs		
	Data input setup time	Master	t _{SU}	4	_	ns	Figure 2.34 to Figu	
		Slave		5	_	1	2.39	
	Data input hold time	Master (PCLKA division ratio set to 1/2)	tHF	0	_	ns		
		Master (PCLKA division ratio set to a value other than 1/2)	t _H	t _{Pcyc}	_			
		Slave	t _H	20	_			
	SSL setup time	Master	t _{LEAD}	N × t _{SPcyc} - 10*1	N × t _{SPcyc} + 100*1	ns		
		Slave		4 × t _{Pcyc}	_	ns		
	SSL hold time	Master	t _{LAG}	N × t _{SPcyc} - 10*2	N × t _{SPcyc} + 100*2	ns		
		Slave	-	4 × t _{Pcyc}	_	ns		
	Data output delay	Master	t _{OD1}	_	6.3	ns	-	
			t _{OD2}	_	6.3	1		
		Slave	t _{OD}	_	20	-		
	Data output hold time	Master	t _{OH}	0	_	ns	-	
		Slave	_	0	_	1		
	Successive transmission delay	Master	t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns		
		Slave		4 × t _{Pcyc}		1		
	MOSI and MISO rise	Output	t _{Dr} , t _{Df}	_	5	ns	1	
	and fall time	Input	1	_	1	μs	1	
	SSL rise and fall time	Output	t _{SSLr} , t _{SSLf}	_	5	ns	_	
		Input	1	_	1	μs		
-	Slave access time			_	25	ns	Figure 2.38 and	
SI	Slave output release tin	ne	t _{REL}	_	25	1	Figure 2.39	

Note: t_{Pcyc}: PCLKA cycle.

Note: Must use pins that have a letter appended to their name, for instance "_A", "_B", to indicate group membership. For the SPI

interface, the AC portion of the electrical characteristics is measured for each group.

Note 1. N is set to an integer from 1 to 8 by the SPCKD register. Note 2. N is set to an integer from 1 to 8 by the SSLND register.

tSPCKr tspckf tspckwh Vон RSPCKn master select Vol output **t**SPCKWL **t**SPCKr **t**SPCKf **t**spckwh VIH **RSPCKn** Vıı slave select input **t**SPCKWL **t**SPcyc V_{OH} = 0.7 × VCC, V_{OL} = 0.3 × VCC, V_{IH} = 0.7 × VCC, V_{IL} = 0.3 × VCC Note: n = A

Figure 2.33 SPI clock timing

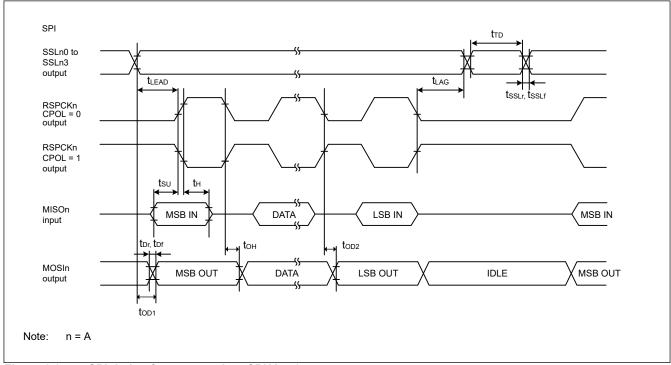


Figure 2.34 SPI timing for master when CPHA = 0

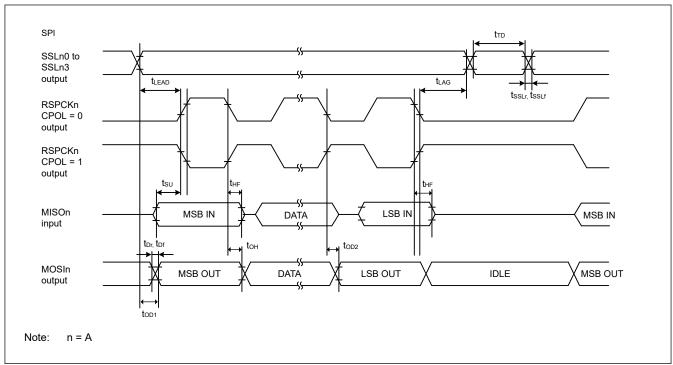


Figure 2.35 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2

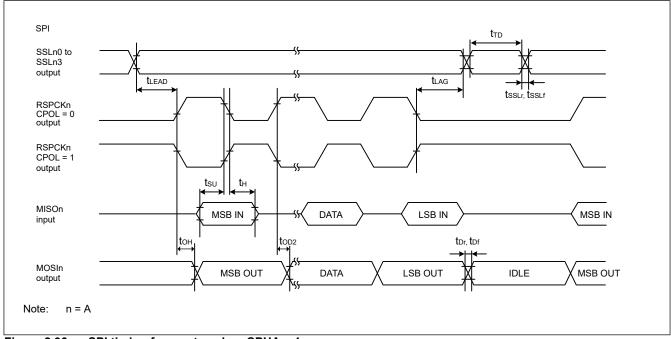


Figure 2.36 SPI timing for master when CPHA = 1

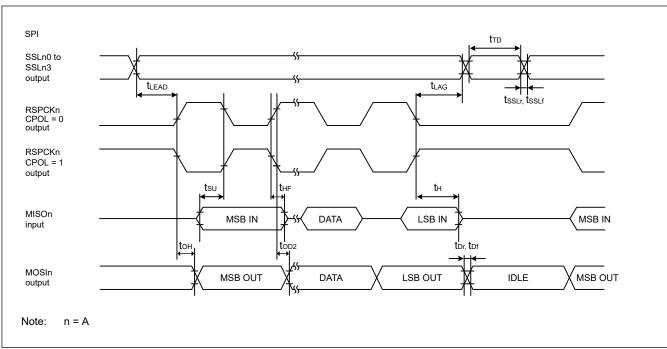


Figure 2.37 RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2

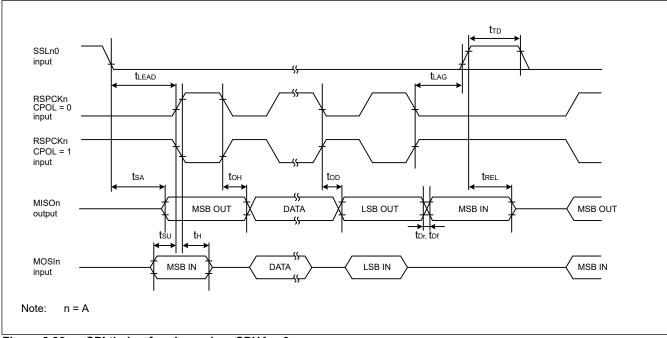


Figure 2.38 SPI timing for slave when CPHA = 0

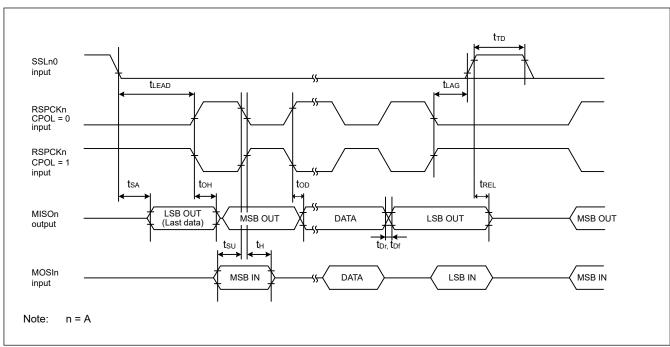


Figure 2.39 SPI timing for slave when CPHA = 1

2.3.10 QSPI Timing

Table 2.28 QSPI timing

Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter		Symbol	Min	Max	Unit	Test conditions
QSPI	QSPCK clock cycle	t _{QScyc}	2	48	t _{Pcyc}	Figure 2.40
	QSPCK clock high pulse width	t _{QSWH}	t _{QScyc} × 0.4	_	ns	
	QSPCK clock low pulse width	t _{QSWL}	t _{QScyc} × 0.4	_	ns	
	Data input setup time	t _{Su}	10	_	ns	Figure 2.41
	Data input hold time	t _{IH}	0	_	ns	
	QSSL setup time	t _{LEAD}	$(N + 0.5) \times t_{Qscyc} - 5^{*1}$	$(N + 0.5) \times t_{Qscyc} + 100^{*1}$	ns	
	QSSL hold time	t _{LAG}	$(N + 0.5) \times t_{Qscyc} - 5^{*2}$	$(N + 0.5) \times t_{Qscyc} + 100^{*2}$	ns	
	Data output delay	t _{OD}	_	4	ns	
	Data output hold time	t _{OH}	-3.3	_	ns	
	Successive transmission delay	t _{TD}	1	16	t _{QScyc}	

Note: t_{Pcyc}: PCLKA cycle.

Note 1. N is set to 0 or 1 in SFMSLD. Note 2. N is set to 0 or 1 in SFMSHD.

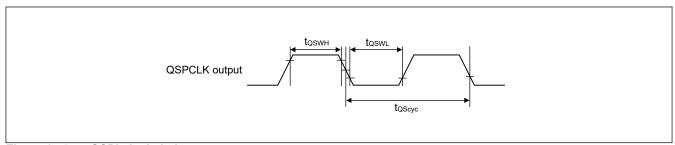


Figure 2.40 QSPI clock timing

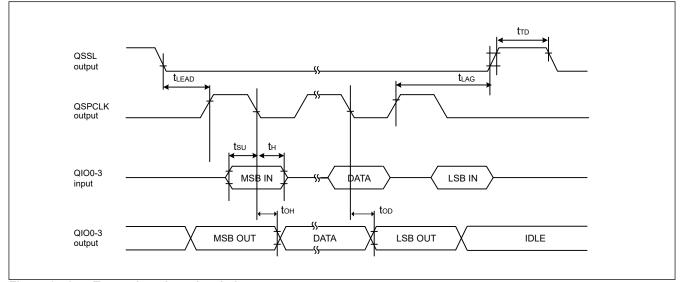


Figure 2.41 Transmit and receive timing

IIC Timing 2.3.11

Table 2.29 IIC timing (1) (1 of 2)

(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B, SCL0_B.
(2) The following pins do not require setting: SCL0_A, SDA0_A.

(3) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group.

Parameter	curcal characteristics is measured for	Symbol	Min	Max	Unit	Test conditions
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	_	ns	Figure 2.42
(Standard mode, SMBus) ICFER.FMPE = 0	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL, SDA rise time	t _{Sr}	_	1000	ns	
	SCL, SDA fall time	t _{Sf}	_	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 300	_	ns	
	START condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 300	_	ns]
	START condition input hold time when wakeup function is enabled	t _{STAH}	1 (5) × t _{IICcyc} + t _{Pcyc} + 300	_	ns	
	Repeated START condition input setup time	t _{STAS}	1000	_	ns	
	STOP condition input setup time	tsтоs	1000	_	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns	1
	Data input hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b *2	_	400	pF	1

Table 2.29 IIC timing (1) (2 of 2)

(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B, SCL0_B.

(2) The following pins do not require setting: SCL0_A, SDA0_A.

(3) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group.

Parameter		Symbol	Min	Max	Unit	Test conditions
IIC	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	_	ns	Figure 2.42
(Fast mode)	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL, SDA rise time	t _{Sr}	20 × (external pullup voltage/5.5V)*1	300	ns	
	SCL, SDA fall time	t _{Sf}	20 × (external pullup voltage/5.5V)*1	300	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	3 (6) × t_{IICcyc} + 4 × t_{Pcyc} + 300	_	ns	
	START condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 300	_	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	1 (5) × t _{IICcyc} + t _{Pcyc} + 300 —		ns	
	Repeated START condition input setup time	t _{STAS}	300	_	ns	
	STOP condition input setup time	tstos	300	_	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns	1
	Data input hold time	t _{SDAH}	0	_	ns	1
	SCL, SDA capacitive load	C _b *2	_	400	pF	

Note: t_{IICcvc} : IIC internal reference clock (IIC ϕ) cycle, t_{Pcvc} : PCLKB cycle.

Note: Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.

Note: Must use pins that have a letter appended to their name, for instance "_A", "_B", to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group.

Note 1. Only supported for SCL0_A and SDA0_A.

Note 2. Cb indicates the total capacity of the bus line.

Table 2.30 IIC timing (2)

Setting of the SCL0_A, SDA0_A pins is not required with the Port Drive Capability bit in the PmnPFS register.

Parameter		Symbol	Min	Max	Unit	Test conditions
IIC (Fast-mode+)	SCL input cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 240	_	ns	Figure 2.42
ICFER.FMPE = 1	SCL input high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 120	_	ns	
	SCL input low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 120	_	ns	
	SCL, SDA rise time	t _{Sr}	_	120	ns	
	SCL, SDA fall time	t _{Sf}	20 × (external pullup voltage/ 5.5V)	120	ns	
	SCL, SDA input spike pulse removal time	t _{SP}	0	1 (4) × tIICcyc	ns	
	SDA input bus free time when wakeup function is disabled	t _{BUF}	3 (6) × t _{IICcyc} + 120	_	ns	
	SDA input bus free time when wakeup function is enabled	t _{BUF}	3 (6) × t _{IICcyc} + 4 × t _{Pcyc} + 120	_	ns	
	Start condition input hold time when wakeup function is disabled	t _{STAH}	t _{IICcyc} + 120	_	ns	
	START condition input hold time when wakeup function is enabled	t _{STAH}	1 (5) × t _{IICcyc} + t _{Pcyc} + 120	_	ns	
	Restart condition input setup time	t _{STAS}	120	_	ns	
	Stop condition input setup time	t _{STOS}	120	_	ns	
	Data input setup time	t _{SDAS}	t _{IICcyc} + 30	_	ns	1
	Data input hold time	t _{SDAH}	0	_	ns	1
	SCL, SDA capacitive load	C _b *1	_	550	pF	

Note: t_{IICcyc}: IIC internal reference clock (IICφ) cycle, t_{Pcyc}: PCLKB cycle.

Note: Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.

Note 1. Cb indicates the total capacity of the bus line.

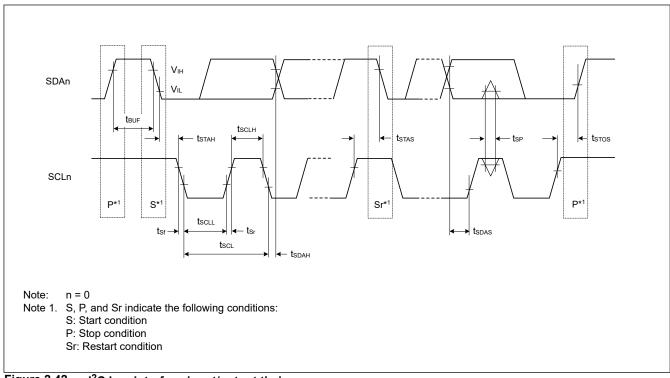


Figure 2.42 I²C bus interface input/output timing

2.4 USB Characteristics

2.4.1 USBFS Timing

Table 2.31 USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics)

Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Input	Input high voltage	V _{IH}	2.0	_	_	V	_
characteristics	Input low voltage	V _{IL}	_	_	0.8	V	_
	Differential input sensitivity	V _{DI}	0.2	_	_	V	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	_	2.5	V	_
Output	Output high voltage	V _{OH}	2.8	_	3.6	V	I _{OH} = –200 μA
characteristics	Output low voltage	V _{OL}	0.0	_	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	_	2.0	V	Figure 2.43
	Rise time	t _{LR}	75	_	300	ns	
	Fall time	t _{LF}	75	_	300	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	80	_	125	%	t _{LR} / t _{LF}
Pull-up and pull-down characteristics	USB_DP and USB_DM pull-down resistance in host controller mode	R _{pd}	14.25	_	24.80	kΩ	_

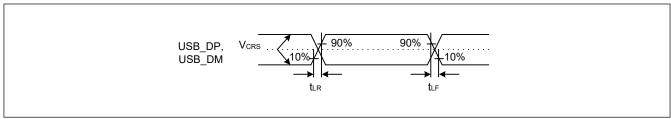


Figure 2.43 USB_DP and USB_DM output timing in low-speed mode

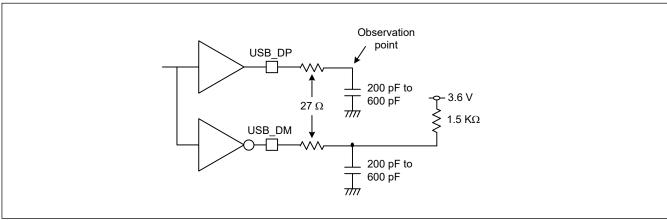


Figure 2.44 Test circuit in low-speed mode

Table 2.32 USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics)

Conditions: VCC = AVCC0 = VCC_USB = VBATT = $3.0 \text{ to } 3.6 \text{ V}, 2.7 \le \text{VREFH0/VREFH} \le \text{AVCC0}, \text{USBCLK} = 48 \text{ MHz}$

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Input	Input high voltage	V _{IH}	2.0	_	_	٧	_
characteristics	Input low voltage	V _{IL}	_	_	0.8	V	_
	Differential input sensitivity	V _{DI}	0.2	_	_	V	USB_DP - USB_DM
	Differential common-mode range	V _{CM}	0.8	_	2.5	V	_
Output characteristics	Output high voltage	V _{OH}	2.8	_	3.6	V	I _{OH} = –200 μA
characteristics	Output low voltage	V _{OL}	0.0	_	0.3	V	I _{OL} = 2 mA
	Cross-over voltage	V _{CRS}	1.3	_	2.0	V	Figure 2.45
	Rise time	t _{LR}	4	_	20	ns	
	Fall time	t _{LF}	4	_	20	ns	
	Rise/fall time ratio	t _{LR} / t _{LF}	90	_	111.11	%	t _{FR} / t _{FF}
	Output resistance	Z _{DRV}	28	_	44	Ω	USBFS: Rs = 27 Ω included
Pull-up and	DM pull-up resistance in device controller	R _{pu}	0.900	_	1.575	kΩ	During idle state
pull-down characteristics	mode		1.425		3.090	kΩ	During transmission and reception
	USB_DP and USB_DM pull-down resistance in host controller mode	R _{pd}	14.25		24.80	kΩ	_

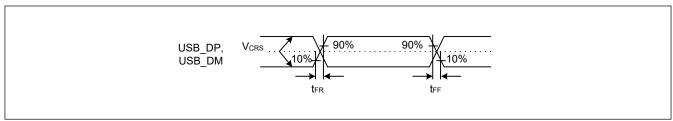


Figure 2.45 USB_DP and USB_DM output timing in full-speed mode

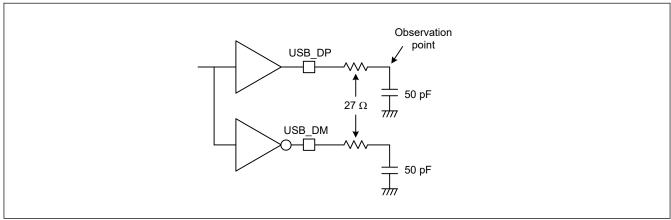


Figure 2.46 Test circuit in full-speed mode

Table 2.33 USBFS characteristics (USB_DP and USB_DM pin characteristics)

Conditions: VCC = AVCC0 = VCC_USB = VBATT = $3.0 \text{ to } 3.6 \text{ V}, 2.7 \le \text{VREFH0/VREFH} \le \text{AVCC0}, \text{USBCLK} = 48 \text{ MHz}$

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Battery Charging	D+ sink current	I _{DP_SINK}	25	_	175	μΑ	_
Specification	D- sink current	I _{DM_SINK}	25	_	175	μΑ	_
	DCD source current	I _{DP_SRC}	7	_	13	μΑ	_
	Data detection voltage	V _{DAT_REF}	0.25	_	0.4	V	_
	D+ source voltage	V _{DP_SRC}	0.5	_	0.7	V	Outout current = 250 μA
	D- source voltage	V _{DM_SRC}	0.5	_	0.7	V	Outout current = 250 µA

2.5 ADC12 Characteristics

Table 2.34 A/D conversion characteristics for unit 0 (1 of 2)

Conditions: PCLKC = 1 to 50 MHz

Conditions. 1 CERC - 1 to 30 km/2					
Parameter	Min	Тур	Max	Unit	Test conditions
Frequency	1	_	50	MHz	_
Analog input capacitance	_	_	30	pF	_
Quantization error	_	±0.5	_	LSB	_
Resolution	_	_	12	Bits	_

Table 2.34 A/D conversion characteristics for unit 0 (2 of 2)

Conditions: PCLKC = 1 to 50 MHz

Parameter			Min	Тур	Max	Unit	Test conditions
High-precision high-speed channels (AN000 to AN002)	Conversion time*1 (operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.52 (0.26)*2	_	_	μs	Sampling in 13 states
		Max. = 400 Ω	0.40 (0.14)*2	_	_	μs	Sampling in 7 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V ≤ VREFH0 ≤ AVCC0
	Offset error		_	±1.0	±2.5	LSB	_
	Full-scale error		_	±1.0	±2.5	LSB	_
	Absolute accuracy		_	±2.0	±4.5	LSB	_
	DNL differential nonlinear	rity error	_	±0.5	±1.5	LSB	_
	INL integral nonlinearity e	error	_	±1.0	±2.5	LSB	_
High-precision normal-speed channels (AN003, AN004, AN011 to	Conversion time*1 (Operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.92 (0.66)*2	_	_	μs	Sampling in 33 states
AN013)	Offset error		_	±1.0	±2.5	LSB	_
	Full-scale error		_	±1.0	±2.5	LSB	_
	Absolute accuracy		_	±2.0	±4.5	LSB	_
	DNL differential nonlinear	rity error	_	±0.5	±1.5	LSB	_
	INL integral nonlinearity e	error	_	±1.0	±2.5	LSB	_
Normal-precision normal-speed channels (AN016)	Conversion time*1 (Operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. = 1 kΩ	0.92 (0.66)*2	_	_	μs	Sampling in 33 states
	Offset error		_	±1.0	±5.5	LSB	_
	Full-scale error		_	±1.0	±5.5	LSB	_
Absolute accuracy		_	±2.0	±7.5	LSB	_	
	DNL differential nonlinearity error		_	±0.5	±4.5	LSB	_
	INL integral nonlinearity e	tegral nonlinearity error				LSB	

Note: These specification values apply when there is no access to the external memory during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges.

The use of PORT0 as digital outputs is not allowed when the 12-Bit A/D converter is used.

The characteristics apply when AVCC0, AVSS0, VREFH0, VREFL0, and 12-bit A/D converter input voltage are stable.

Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions.

Note 2. Values in parentheses indicate the sampling time.

Table 2.35 A/D internal reference voltage characteristics

Parameter	Min	Тур	Max	Unit	Test conditions
A/D internal reference voltage	1.13	1.18	1.23	V	_
Sampling time	4.15	_	_	μs	_

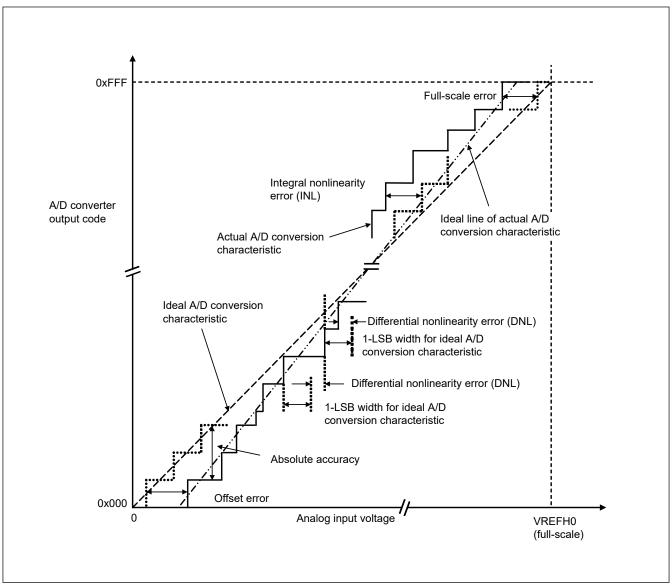


Figure 2.47 Illustration of ADC12 characteristic terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ± 5 LSB means that the actual A/D conversion result is in the range of 0x003 to 0x000, though an output code of 0x008 can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.6 DAC12 Characteristics

Table 2.36 D/A conversion characteristics

Parameter	Min	Тур	Max	Unit	Test conditions
Resolution	_	_	12	Bits	_
Without output amplifier					
Absolute accuracy	_	_	±24	LSB	Resistive load 2 MΩ
INL	_	±2.0	±8.0	LSB	Resistive load 2 MΩ
DNL	_	±1.0	±2.0	LSB	_
Output impedance	_	8.5	_	kΩ	_
Conversion time	_	_	3	μs	Resistive load 2 MΩ, Capacitive load 20 pF
Output voltage range	0	_	VREFH	V	_
With output amplifier	,				
INL	_	±2.0	±4.0	LSB	_
DNL	_	±1.0	±2.0	LSB	_
Conversion time	_	_	4.0	μs	_
Resistive load	5	_	_	kΩ	_
Capacitive load	_	_	50	pF	_
Output voltage range	0.2	_	VREFH – 0.2	V	_

2.7 OSC Stop Detect Characteristics

Table 2.37 Oscillation stop detection circuit characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	_	_	1	ms	Figure 2.48

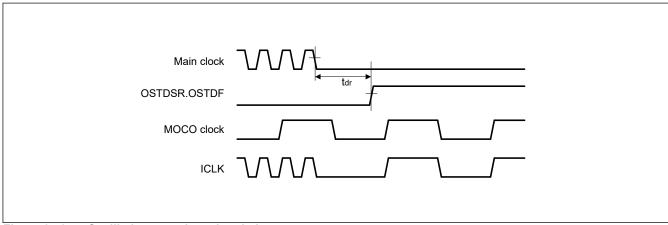


Figure 2.48 Oscillation stop detection timing

2.8 POR and LVD Characteristics

Table 2.38 Power-on reset circuit and voltage detection circuit characteristics (1)

Parameter			Symbol	Min	Тур	Max	Un it	Test conditions
Voltage detection level	Power-on reset (POR)	DPSBYCR.DEEPCUT[1:0] = 00b or 01b.	V _{POR}	2.5	2.6	2.7	٧	Figure 2.49
		DPSBYCR.DEEPCUT[1:0] = 11b.		1.8	2.25	2.7		
	Voltage detection of	ircuit (LVD0)	V _{det0_1}	2.84	2.94	3.04		Figure 2.50
			V _{det0_2}	2.77	2.87	2.97		
			V _{det0_3}	2.70	2.80	2.90		
	Voltage detection of	ircuit (LVD1)	V _{det1_1}	2.89	2.99	3.09		Figure 2.51
			V _{det1_2}	2.82	2.92	3.02		
			V _{det1_3}	2.75	2.85	2.95		
	Voltage detection of	ircuit (LVD2)	V _{det2_1}	2.89	2.99	3.09		Figure 2.52
			V _{det2_2}	2.82	2.92	3.02		
			V _{det2_3}	2.75	2.85	2.95		
Internal reset time	Power-on reset tim	e	t _{POR}	_	4.5	_	ms	Figure 2.49
	LVD0 reset time		t _{LVD0}	_	0.51	_		Figure 2.50
	LVD1 reset time		t _{LVD1}	_	0.38	_		Figure 2.51
	LVD2 reset time		t _{LVD2}	_	0.38	_		Figure 2.52
Minimum VCC dow	n time ^{*1}		t _{VOFF}	200	_	_	μs	Figure 2.49, Figure 2.50
Response delay			t _{det}	_	_	200	μs	Figure 2.50 to Figure 2.52
LVD operation stabilization time (after LVD is enabled)				_	_	10	μs	Figure 2.51,
Hysteresis width (LVD1 and LVD2)				_	70		m V	Figure 2.52

Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for POR and LVD.

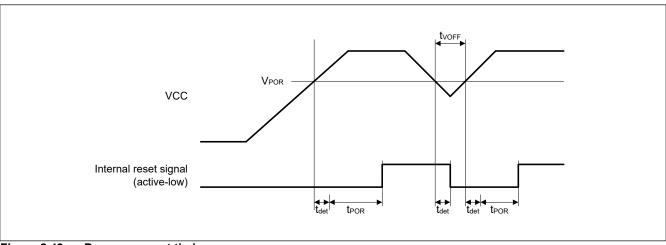


Figure 2.49 Power-on reset timing

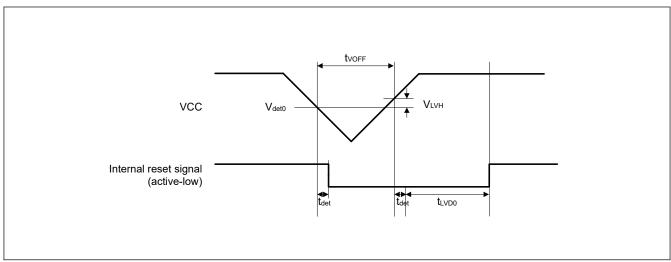


Figure 2.50 Voltage detection circuit timing (V_{det0})

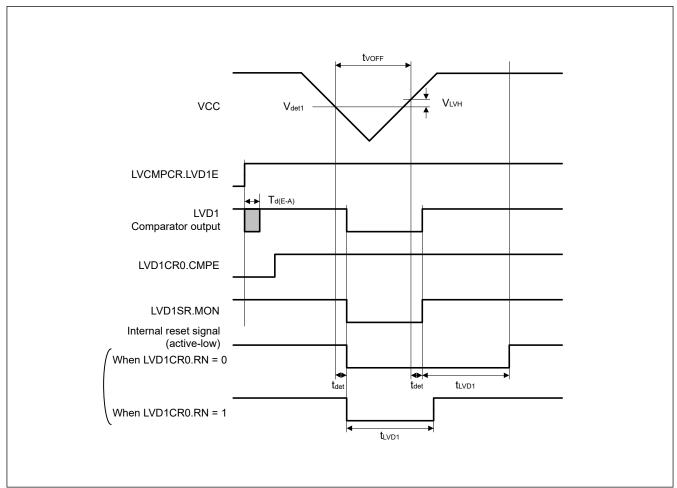


Figure 2.51 Voltage detection circuit timing (V_{det1})

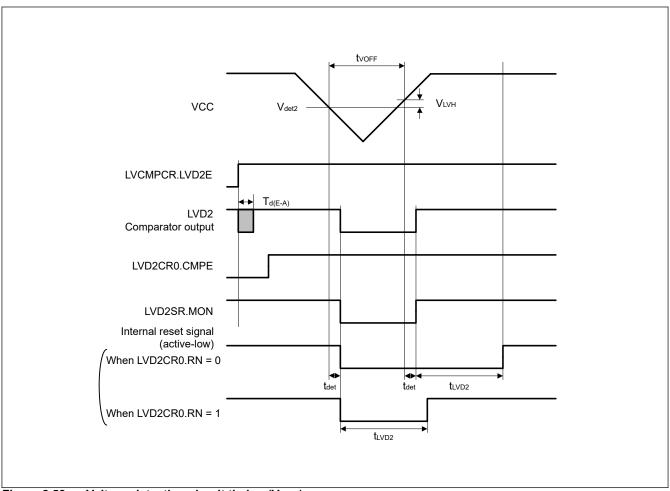


Figure 2.52 Voltage detection circuit timing (V_{det2})

2.9 VBATT Characteristics

Table 2.39 Battery backup function characteristics

Conditions: VCC = AVCC0 = VCC USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.65 to 3.6 V*1

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Voltage level for switching to battery backup	V _{DETBATT}	2.50	2.60	2.70	٧	Figure 2.53
Lower-limit VBATT voltage for power supply switching caused by VCC voltage drop	V _{BATTSW}	2.70	_	_	V	
VCC-off period for starting power supply switching	t _{VOFFBATT}	200	_	_	μs	
VBATT low voltage detection level	V _{battldet}	1.8	1.9	2.0	٧	Figure 2.54
Minimum VBATT down time	t _{BATTOFF}	200	_	_	μs	
Response delay	t _{BATTdet}	_	_	200	μs	
VBATT monitor operation stabilization time (after VBATTMNSELR.VBATTMNSEL is changed to 1)	t _{d(E-A)}	_	_	20	μs	
VBATT current increase (when VBATTMNSELR.VBATTMNSEL is 1 compared to the case that VBATTMNSELR.VBATTMNSEL is 0)	IVBATTSEL	_	140	350	nA	

Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (V_{DETBATT}).

Note 1. Low CL crystal cannot be used below VBATT = 1.8V.

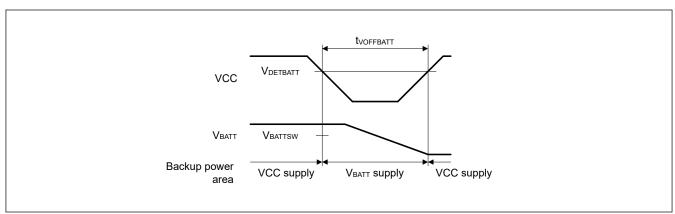


Figure 2.53 Battery backup function characteristics

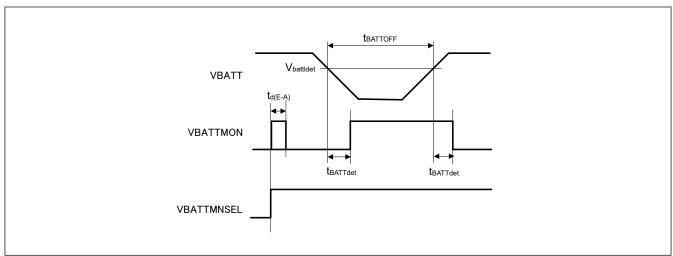


Figure 2.54 Battery backup function characteristics

2.10 Flash Memory Characteristics

2.10.1 Code Flash Memory Characteristics

Table 2.40 Code flash memory characteristics (1 of 2)

Conditions: Program or erase: FCLK = 4 to 50 MHz

Read: FCLK ≤ 50 MHz

			FCLK =	4 MHz		20 MHz ≤	FCLK ≤	50 MHz		Test
Parameter		Symbol	Min	Typ*6	Max	Min	Typ*6	Max	Unit	conditions
Programming time	128-byte	t _{P128}	_	0.75	13.2	_	0.34	6.0	ms	
N _{PEC} ≤ 100 times	8-KB	t _{P8K}	_	49	176	_	22	80	ms	
	32-KB	t _{P32K}	_	194	704	_	88	320	ms	
Programming time	128-byte	t _{P128}	_	0.91	15.8	_	0.41	7.2	ms	
N _{PEC} > 100 times	8-KB	t _{P8K}	_	60	212	_	27	96	ms	
	32-KB	t _{P32K}	_	234	848	_	106	384	ms	
Erasure time	8-KB	t _{E8K}	_	78	216	_	43	120	ms	
N _{PEC} ≤ 100 times	32-KB	t _{E32K}	_	283	864	_	157	480	ms	
Erasure time	8-KB	t _{E8K}	_	94	260	_	52	144	ms	
N _{PEC} > 100 times	32-KB	t _{E32K}	_	341	1040	_	189	576	ms	

Table 2.40 Code flash memory characteristics (2 of 2)

Conditions: Program or erase: FCLK = 4 to 50 MHz

Read: FCLK ≤ 50 MHz

		FCLK =	4 MHz		20 MHz ≤	FCLK ≤	50 MHz		Test
Parameter	Symbol	Min	Typ*6	Max	Min	Typ*6	Max	Unit	conditions
Reprogramming/erasure cycle*4	N _{PEC}	10000*1	_	_	10000*1	_	_	Times	
Suspend delay during programming	t _{SPD}	_	_	264	_	_	120	μs	
Programming resume time	t _{PRT}	_	_	110	_	_	50	μs	
First suspend delay during erasure in suspend priority mode	t _{SESD1}	_	_	216	_	_	120	μs	
Second suspend delay during erasure in suspend priority mode	t _{SESD2}	_	_	1.7	_	_	1.7	ms	
Suspend delay during erasure in erasure priority mode	t _{SEED}	_	_	1.7	_	_	1.7	ms	
First erasing resume time during erasure in suspend priority mode ^{*5}	t _{REST1}	_	_	1.7	_	_	1.7	ms	
Second erasing resume time during erasure in suspend priority mode	t _{REST2}	_	_	144	_	_	80	μs	
Erasing resume time during erasure in erasure priority mode	t _{REET}	_	_	144	_	_	80	μs	
Forced stop command	t _{FD}	_	_	32	_	_	20	μs	
Data hold time*2	t _{DRP}	10*2 *3	_	_	10*2 *3	_	_	Years	

Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.

Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.

Note 3. This result is obtained from reliability testing.

Note 4. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000), erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited.

Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension.

Note 6. The reference value at VCC = 3.3V and room temperature.

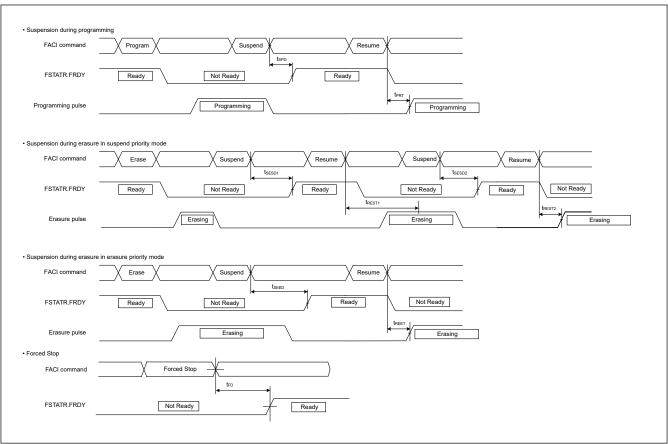


Figure 2.55 Suspension and forced stop timing for flash memory programming and erasure

2.10.2 Data Flash Memory Characteristics

Table 2.41 Data flash memory characteristics (1 of 2)

Conditions: Program or erase: FCLK = 4 to 50 MHz

Read: FCLK ≤ 50 MHz

			FCLK = 4	MHz		20 MHz ≤ F	CLK ≤ 5	0 MHz		Test
Parameter		Symbol	Min	Typ*6	Max	Min	Typ*6	Max	Unit	conditions
Programming time	4-byte	t _{DP4}	_	0.36	3.8	_	0.16	1.7	ms	
	8-byte	t _{DP8}	_	0.38	4.0	_	0.17	1.8		
	16-byte	t _{DP16}	_	0.42	4.5	_	0.19	2.0		
Erasure time	64-byte	t _{DE64}	_	3.1	18	_	1.7	10	ms	
	128-byte	t _{DE128}	_	4.7	27	_	2.6	15		
	256-byte	t _{DE256}	_	8.9	50	_	4.9	28		
Blank check time	4-byte	t _{DBC4}	_	_	84	_	_	30	μs	
Reprogramming/erasure cycle*1		N _{DPEC}	125000 ^{*2}	_	_	125000 ^{*2}	_	_	_	
Suspend delay during programming	4-byte	t _{DSPD}	_	_	264	_	_	120	μs	
	8-byte		_	_	264	_	_	120		
	16-byte		_	_	264	_	_	120		
Programming resume time		t _{DPRT}	_	_	110	_	_	50	μs	
First suspend delay during erasure in	64-byte	t _{DSESD1}	_	_	216	_	_	120	μs	
suspend priority mode	128-byte		_	_	216	_	_	120		
	256-byte		_	_	216	_	_	120		

Table 2.41 Data flash memory characteristics (2 of 2)

Conditions: Program or erase: FCLK = 4 to 50 MHz

Read: FCLK ≤ 50 MHz

			FCLK = 4	MHz		20 MHz ≤ F	CLK ≤ 5	0 MHz		Test
Parameter		Symbol	Min	Typ*6	Max	Min	Typ*6	Max	Unit	conditions
Second suspend delay during erasure in	64-byte	t _{DSESD2}	_	_	300	_	_	300	μs	
suspend priority mode	128-byte		_	_	390	_	_	390		
	256-byte		_	_	570	_	_	570		
Suspend delay during erasing in erasure	64-byte	t _{DSEED}	_	_	300	_	_	300	μs	
priority mode	128-byte		_	_	390	_	_	390		
	256-byte		_	_	570	_	_	570		
First erasing resume time during erasure in priority mode ^{*5}	suspend	t _{DREST1}	_	_	300	_	_	300	μs	
Second erasing resume time during erasur suspend priority mode	e in	t _{DREST2}	_	_	126	_	_	70	μs	
Erasing resume time during erasure in erasure priority mode		t _{DREET}	_	_	126	_	_	70	μs	
Forced stop command		t _{FD}	_	_	32	_	_	20	μs	
Data hold time*3		t _{DRP}	10 ^{*3} *4	_	_	10*3 *4	_	_	Year	

- Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000), erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited.
- Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.
- Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
- Note 4. This result is obtained from reliability testing.
- Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension.
- Note 6. The reference value at VCC = 3.3 V and room temperature.

2.10.3 Option Setting Memory Characteristics

Table 2.42 Option setting memory characteristics

Conditions: Program: FCLK = 4 to 50 MHz

Read: FCLK ≤ 50 MHz

		FCLK = 4	MHz		20 MHz ≤ FCLK ≤ 50 MHz				
Parameter	Symbol	Min	Typ*4	Max	Min	Typ*4	Max	Unit	Test conditions
Programming time N _{OPC} ≤ 100 times	t _{OP}	_	83	309	_	45	162	ms	
Programming time N _{OPC} > 100 times	t _{OP}	_	100	371	_	55	195	ms	
Reprogramming cycle	N _{OPC}	20000*1	_	_	20000*1	_	_	Times	
Data hold time*2	t _{DRP}	10*2 *3	_	_	10*2 *3	_	_	Years	

- Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.
- Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
- Note 3. This result is obtained from reliability testing.
- Note 4. The reference value at VCC = 3.3 V and room temperature.

2.11 Boundary Scan

Table 2.43 Boundary scan characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	100	_	_	ns	Figure 2.56
TCK clock high pulse width	t _{TCKH}	45	_	_	ns	
TCK clock low pulse width	t _{TCKL}	45	_	_	ns	
TCK clock rise time	t _{TCKr}	_	_	5	ns	
TCK clock fall time	t _{TCKf}	_	_	5	ns	
TMS setup time	t _{TMSS}	20	_	_	ns	Figure 2.57
TMS hold time	t _{TMSH}	20	_	_	ns	
TDI setup time	t _{TDIS}	20	_	_	ns	
TDI hold time	t _{TDIH}	20	_	_	ns	
TDO data delay	t _{TDOD}	_	_	40	ns	
Boundary scan circuit startup time*1	T _{BSSTUP}	t _{RESWP}	_	_	_	Figure 2.58

Note 1. Boundary scan does not function until the power-on reset becomes negative.

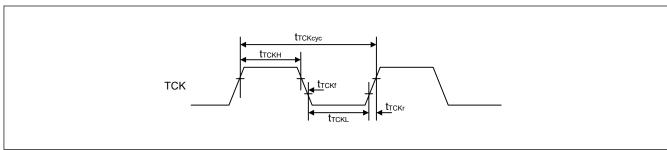


Figure 2.56 Boundary scan TCK timing

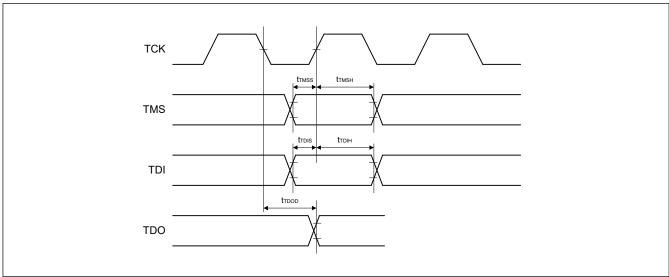


Figure 2.57 Boundary scan input/output timing

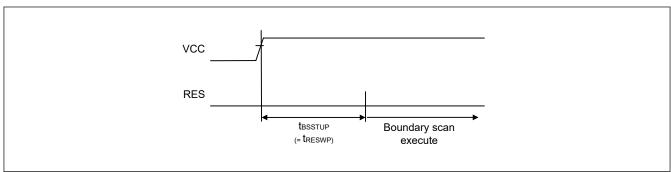


Figure 2.58 Boundary scan circuit startup timing

2.12 Joint Test Action Group (JTAG)

Table 2.44 JTAG

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
TCK clock cycle time	t _{TCKcyc}	40	_	_	ns	Figure 2.59
TCK clock high pulse width	t _{TCKH}	15	_	_	ns	
TCK clock low pulse width	t _{TCKL}	15	_	_	ns	
TCK clock rise time	t _{TCKr}	_	_	5	ns	
TCK clock fall time	t _{TCKf}	_	_	5	ns	
TMS setup time	t _{TMSS}	8	_	_	ns	Figure 2.60
TMS hold time	t _{TMSH}	8	_	_	ns	
TDI setup time	t _{TDIS}	8	_	_	ns	
TDI hold time	t _{TDIH}	8	_	_	ns	
TDO data delay time	t _{TDOD}	_	_	20	ns	

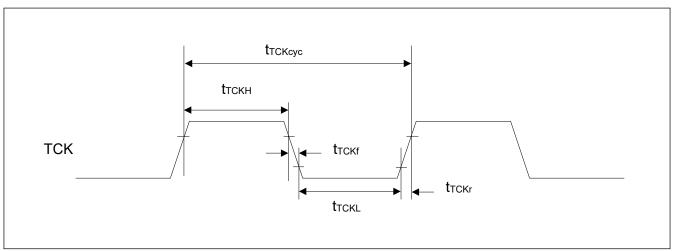


Figure 2.59 JTAG TCK timing

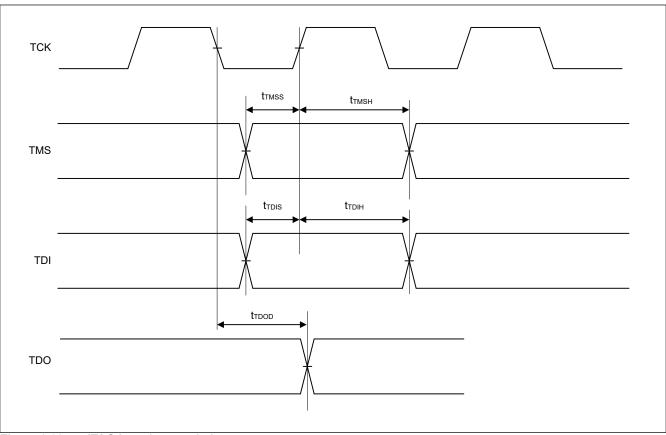


Figure 2.60 JTAG input/output timing

2.13 Serial Wire Debug (SWD)

Table 2.45 SWD

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	
SWCLK clock cycle time	t _{SWCKcyc}	40	_	_	ns	Figure 2.61	
SWCLK clock high pulse width	tswckh	15	_	_	ns		
SWCLK clock low pulse width	tswckl	15	_	_	ns		
SWCLK clock rise time	t _{SWCKr}	_	_	5	ns		
SWCLK clock fall time	tswckf	_	_	5	ns		
SWDIO setup time	t _{SWDS}	8	_	_	ns	Figure 2.62	
SWDIO hold time	t _{SWDH}	8	_	_	ns		
SWDIO data delay time	tswdd	2	_	28	ns		

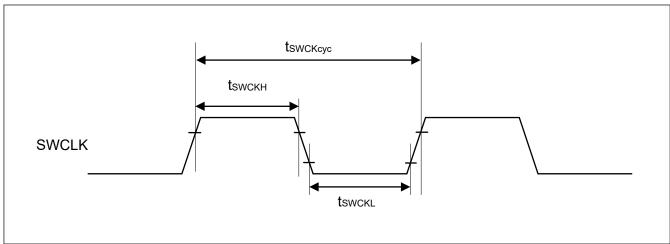


Figure 2.61 SWD SWCLK timing

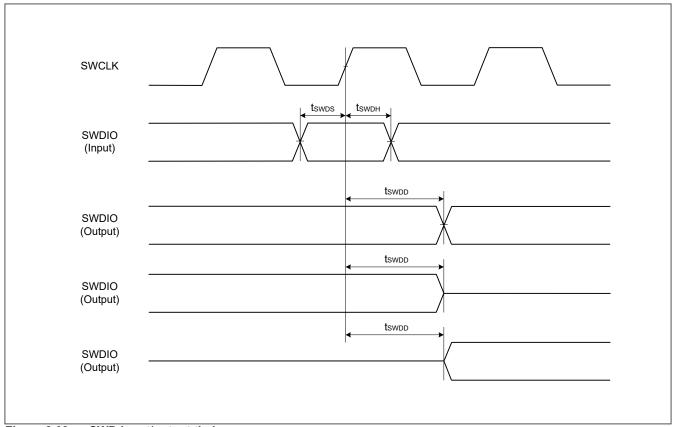


Figure 2.62 SWD input/output timing

Appendix 1. Port States in Each Processing Mode

				David Caffeering	After Deep Software Standby mode is canceled (return to startup mode)		
Function Pin function Re		Reset	Software Standby mode	Deep Software Standby mode	IOKEEP = 0	IOKEEP = 1*1	
Mode	MD	Pull-up	Keep-O	Keep	Hi-Z	Keep	
JTAG	TCK/TMS/TDI	Pull-up	Keep-O	Keep	Hi-Z	Keep	
	TDO	output	Keep-O	Keep	TDO output	Keep	
IRQ	IRQx	Hi-Z	Keep-O*2	Keep	Hi-Z	Кеер	
	IRQx-DS	Hi-Z	Keep-O*2	Keep*3	Hi-Z	Keep	
AGT	AGTIOn	Hi-Z	Keep-O*2	Keep	Hi-Z	Keep	
	AGTIOn (n=1,3)	Hi-Z	Keep-O*2	Keep*3	Hi-Z	Keep	
SCI	RXD0	Hi-Z	Keep-O*2	Keep	Hi-Z	Keep	
IIC	SCLn/SDAn	Hi-Z	Keep-O*2	Keep	Hi-Z	Keep	
USBFS	USB_OVRCURx	Hi-Z	Keep-O*2	Keep	Hi-Z	Keep	
	USB_OVRCURx-DS/ USB_VBUS	Hi-Z	Keep-O*2	Keep*3	Hi-Z	Keep	
	USB_DP/USB_DM	Hi-Z	Keep-O*4	Keep*3	Hi-Z	Кеер	
RTC	RTCICx	Hi-Z	Keep-O*2	Keep*3	Hi-Z	Keep	
	RTCOUT	Hi-Z	[RTCOUT selected] RTCOUT output	Keep	Hi-Z	Keep	
CLKOUT	CLKOUT	Hi-Z	[CLKOUT selected] CLKOUT output	Keep	Hi-Z	Keep	
DAC	DAn	Hi-Z	[DAn output (DAOE = 1)] D/A output retained	Keep	Hi-Z	Keep	
Others	_	Hi-Z	Keep-O	Keep	Hi-Z	Keep	

Note: H: High-level

L: Low-level

Hi-Z: High-impedance

Keep-O: Output pins retain their previous values. Input pins go to high-impedance.

Keep: Pin states are retained during periods in Software Standby mode.

Note 1. Retains the I/O port state until the DPSBYCR.IOKEEP bit is cleared to 0.

Note 2. Input is enabled if the pin is specified as the Software Standby canceling source while it is used as an external interrupt pin. Note 3. Input is enabled if the pin is specified as the Deep Software Standby canceling source.

Note 4. Input is enabled while the pin is used as an input pin.

Appendix 2. Package Dimensions

Information on the latest version of the package dimensions or mountings is displayed in "Packages" on the Renesas Electronics Corporation website.

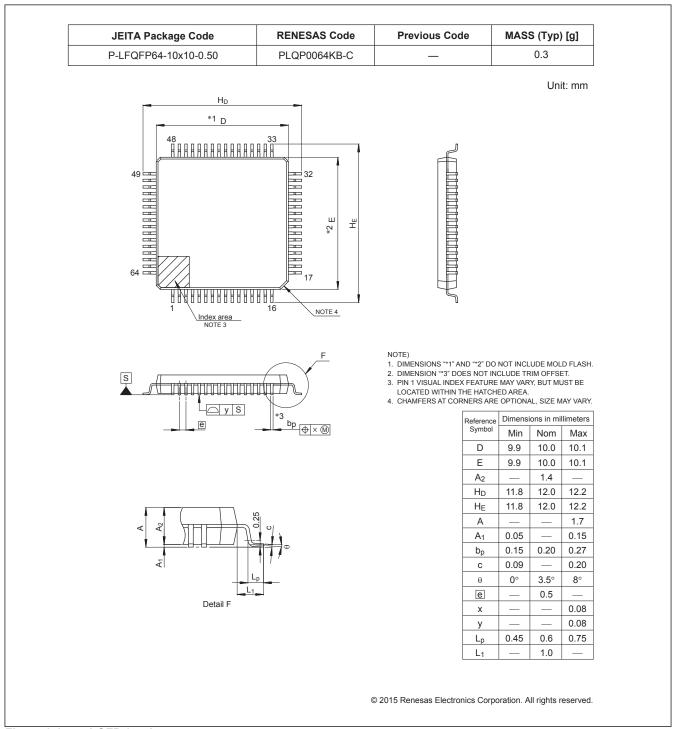


Figure 2.1 LQFP 64-pin

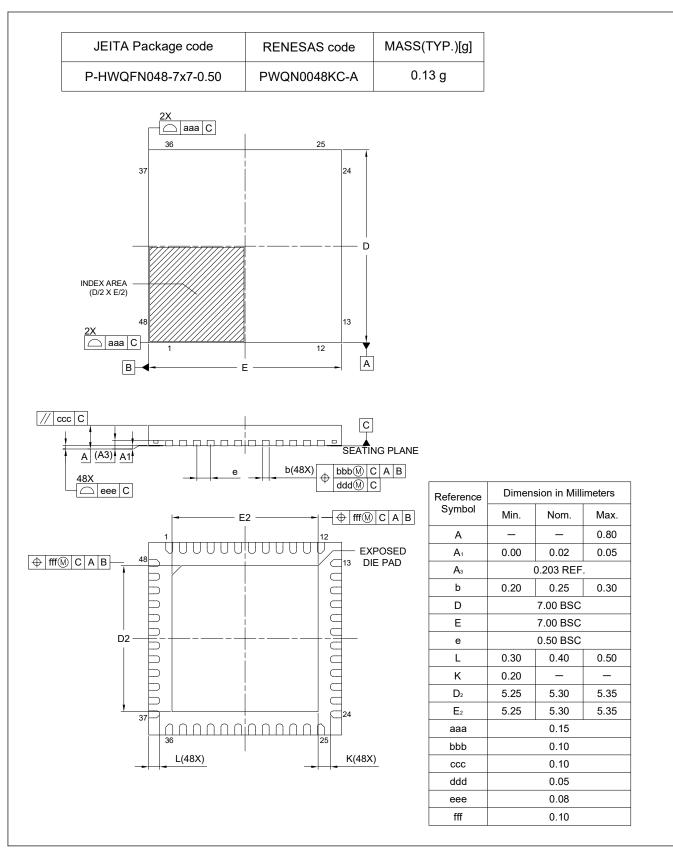


Figure 2.2 QFN 48-pin

Appendix 3. I/O Registers

This appendix describes I/O register address and access cycles by function.

3.1 Peripheral Base Addresses

This section provides the base addresses for peripherals described in this manual. Table 3.1 shows the name, description, and the base address of each peripheral.

Table 3.1 Peripheral base address (1 of 2)

Name	Description	Base address			
RMPU	Renesas Memory Protection Unit	0x4000_0000			
TZF	TrustZone Filter	0x4000_0E00			
SRAM	SRAM Control	0x4000_2000			
BUS	BUS Control	0x4000_3000			
DMAC0	Direct memory access controller 0	0x4000_5000			
DMAC1	Direct memory access controller 1	0x4000_5040			
DMAC2	Direct memory access controller 2	0x4000_5080			
DMAC3	Direct memory access controller 3	0x4000_50C0			
DMAC4	Direct memory access controller 4	0x4000_5100			
DMAC5	Direct memory access controller 5	0x4000_5140			
DMAC6	Direct memory access controller 6	0x4000_5180			
DMAC7	Direct memory access controller 7	0x4000_51C0			
DMA	DMAC Module Activation	0x4000_5200			
DTC	Data Transfer Controller	0x4000_5400			
ICU	Interrupt Controller	0x4000_6000			
CPSCU	CPU System Security Control Unit	0x4000_8000			
DBG	Debug Function	0x400_1B000			
FCACHE	Flash Cache	0x400_1C100			
SYSC	System Control	0x4001_E000			
PORT0	Port 0 Control Registers	0x4008_0000			
PORT1	Port 1 Control Registers	0x4008_0020			
PORT2	Port 2 Control Registers	0x4008_0040			
PORT3	Port 3 Control Registers	0x4008_0060			
PORT4	Port 4 Control Registers	0x4008_0080			
PORT5	Port 5 Control Registers	0x4008_00A0			
PFS	Pmn Pin Function Control Register	0x4008_0800			
ELC	Event Link Controller	0x4008_2000			
RTC	Realtime Clock	0x4008_3000			
IWDT	Independent Watchdog Timer	0x4008_3200			
WDT	Watchdog Timer	0x4008_3400			
CAC	Clock Frequency Accuracy Measurement Circuit	0x4008_3600			
MSTP	Module Stop Control A, B, C, D	0x4008_4000			
POEG	Port Output Enable Module for GPT	0x4008_A000			
USBFS	USB 2.0 FS Module	0x4009_0000			
IIC0	Inter-Integrated Circuit 0	0x4009_F000			

Table 3.1 Peripheral base address (2 of 2)

Name	Description	Base address
IIC0WU	Inter-Integrated Circuit 0 Wake-up Unit	0x4009_F014
CAN0	CAN0 Module	0x400A_8000
PSCU	Peripheral Security Control Unit	0x400E_0000
AGT0	Low Power Asynchronous General purpose Timer 0	0x400E_8000
AGT1	Low Power Asynchronous General purpose Timer 1	0x400E_8100
AGT2	Low Power Asynchronous General purpose Timer 2	0x400E_8200
AGT3	Low Power Asynchronous General purpose Timer 3	0x400E_8300
AGT5	Low Power Asynchronous General purpose Timer 5	0x400E_8500
CRC	CRC Calculator	0x4010_8000
DOC	Data Operation Circuit	0x4010_9000
SCI0	Serial Communication Interface 0	0x4011_8000
SCI3	Serial Communication Interface 3	0x4011_8300
SCI4	Serial Communication Interface 4	0x4011_8400
SCI9	Serial Communication Interface 9	0x4011_8900
SPI0	Serial Peripheral Interface 0	0x4011_A000
SCE9	Secure Cryptographic Engine	0x4016_1000
GPT321	General PWM 32-Bit Timer 1	0x4016_9100
GPT322	General PWM 32-Bit Timer 2	0x4016_9200
GPT164	General PWM 16-Bit Timer 4	0x4016_9400
GPT165	General PWM 16-Bit Timer 5	0x4016_9500
ADC120	12bit A/D Converter 0	0x4017_0000
DAC12	12-bit D/A converter	0x4017_1000
FLAD	Data Flash	0x407F_C000
FACI	Flash Application Command Interface	0x407F_E000
QSPI	Quad-SPI	0x6400_0000

Note: Name = Peripheral name

Description = Peripheral functionality

Base address = Lowest reserved address or address used by the peripheral

3.2 Access Cycles

This section provides access cycle information for the I/O registers described in this manual.

- Registers are grouped by associated module.
- The number of access cycles indicates the number of cycles based on the specified reference clock.
- In the internal I/O area, reserved addresses that are not allocated to registers must not be accessed, otherwise operations
 cannot be guaranteed.
- The number of I/O access cycles depends on bus cycles of the internal peripheral bus, divided clock synchronization
 cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency ratio
 between ICLK and PCLK.
- When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always constant.
- When the frequency of ICLK is greater than that of PCLK, at least 1 PCLK cycle is added to the number of divided clock synchronization cycles.
- The number of write access cycles indicates the number of cycles obtained by non-bufferable write access.

Note: This applies to the number of cycles when access from the CPU does not conflict with the instruction fetching to the external memory or bus access from other bus masters such as DTC or DMAC.

Table 3.2 Access cycles (1 of 3)

			Number of access cycles							
	Address		ICLK = PC	ICLK = PCLK ICLK > PCL		_K*1				
Peripherals	From	То	Read	Write	Read	Write	Cycle Unit	Related function		
RMPU, TZF, SRAM, BUS, DMACn, DMA, DTC, ICU	0x4000_0000	0x4000_6FFF	2	2	2	2	ICLK	Renesas Memory Protection Unit, TrustZone Filter, SRAM Control, BUS Control, Direct memory access controller n, DMAC Module Activation, DTC Control Register Interrupt Controller		
CPSCU, DBG, FCACHE	0x4000_8000	0x4001_CFFF	4	3	4	3	ICLK	CPU System Security Control Unit, Debug Function, Flash Cach		
SYSC	0x4001_E000	0x4001_E3FF	5	4	5	4	ICLK	System Control		
SYSC	0x4001_E400	0x4001_E5FF	9	8	5 to 8	5 to 8	PCLKB	System Control		
PORTn, PFS	0x4008_0000	0x4008_0FFF	5	4	2 to 5	2 to 4	PCLKB	Port n Control Registers, Pmn Pin Function Control Register		
ELC, RTC, IWDT, WDT, CAC	0x4008_2000	0x4008_3FFF	5	4	3 to 5	2 to 4	PCLKB	Event Link Controller, Realtime Clock, Independent Watchdog Timer, Watchdog Timer, Clock Frequency Accuracy Measurement Circuit		
MSTP	0x4008_4000	0x4008_4FFF	5	4	2 to 5	2 to 4	PCLKB	Module Stop Control		
POEG	0x4008_A000	0x4008_AFFF	5	4	3 to 5	2 to 4	PCLKB	Port Output Enable Module for GPT		
USBFS	0x4009_0000	0x4009_3FFF	6	5	3 to 6	3 to 5	PCLKB	USB 2.0 FS Module		
USBFS	0x4009_4000	0x4009_4FFF	4	3	1 to 4	1 to 3	PCLKB	USB 2.0 FS Module		
IICn, IIC0WU	0x4009_2000	0x4009_FFFF	5	4	2 to 5	2 to 4	PCLKB	Inter-Integrated Circu n, Inter-Integrated Circuit 0 Wake-up Un		
CANn	0x400A_8000	0x400A_9FFF	5	4	2 to 5	2 to 4	PCLKB	CANn Module		
PSCU	0x400E_0000	0x400E_0FFF	5	4	2 to 5	2 to 4	PCLKB	Peripheral Security Control Unit		
AGTn	0x400E_8000	0x400E_8FFF	7	4	5 to 7	2 to 4	PCLKB	Low Power Asynchronous General purpose Timer n		
CRC, DOC	0x4010_8000	0x4010_9FFF	5	4	2 to 5	2 to 4	PCLKA	CRC Calculator, Data Operation Circuit		
SCIn	0x4011_8000	0x4011_8FFF	5*2	4*2	2 to 5*2	2 to 4*2	PCLKA	Serial Communication Interface n		
SPIn	0x4011_A000	0x4011_AFFF	5*3	4*3	2 to 5*3	2 to 4*3	PCLKA	Serial Peripheral Interface n		
SCE9	0x4016_1000	0x4016_1FFF	6	4	3 to 6	2 to 4	PCLKA	Secure Cryptographic Engine		
GPT32n, GPT16n, GPT_OPS	0x4016_9000	0x4016_9FFF	7	4	4 to 7	2 to 4	PCLKA	General PWM 32-Bit Timer n, General PWM 16-Bit Timer n, Output Phase Switching Controller		

Table 3.2 Access cycles (2 of 3)

			Number of access cycles						
	Address		ICLK = PCLK		ICLK > PCLK*1		Cycle		
Peripherals	From	То	Read	Write	Read	Write	Unit	Related function	
ADC12n, DAC12	0x4017_0000	0x4017_2FFF	5	4	2 to 5	2 to 4	PCLKA	12bit A/D Converter n, 12-bit D/A converter	
QSPI	0x6400_0000	0x6400_000F	5	14 to *4	2 to 5	14 to *4	PCLKA	Quad-SPI	
QSPI	0x6400_0010	0x6400_0013	25 to *4	6 to *4	25 to *4	5 to *4	PCLKA	Quad-SPI	
QSPI	0x6400_0014	0x6400_0037	5	14 to *4	2 to 5	14 to *4	PCLKA	Quad-SPI	
QSPI	0x6400_0804	0x6400_0807	4	3	1 to 4	1 to 3	PCLKA	Quad-SPI	

Table 3.2 Access cycles (3 of 3)

			Number of access cycles						
	Address		ICLK = FCLK		ICLK > FCLK*1		Cycle		
Peripherals	From	То	Read	Write	Read	Write	Unit	Related function	
FLAD, FACI	0x407F_C000	0x407F_EFFF	3	3	2 to 3	2 to 3	FCLK	Data Flash, Flash Application Command Interface	

- Note 1. If the number of PCLK or FCLK cycles is non-integer (for example 1.5), the minimum value is without the decimal point, and the maximum value is rounded up to the decimal point. For example, 1.5 to 2. 5 is 1 to 3.
 When accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in
- Note 2. When accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in Table 3.2. When accessing an 8-bit register (including FTDRH, FTDRL, FRDRH, and FRDRL), the access cycles are as shown in Table 3.2.
- Note 3. When accessing the 32-bit register (SPDR), access is 2 cycles more than the value in Table 3.2. When accessing an 8-bit or 16-bit register (SPDR_HA), the access cycles are as shown in Table 3.2.
- Note 4. The access cycles depend on the QSPI bus cycles.

Appendix 4. Related Documents

Component	Document Type	Description			
Microcontrollers	Data sheet	Features, overview, and electrical characteristics of the MCU			
	User's Manual: Hardware	MCU specifications such as pin assignments, memory maps, peripheral functions, electrical characteristics, timing diagrams, ar operation descriptions			
	Application Notes	Technical notes, board design guidelines, and software migration information			
	Technical Update (TU)	Preliminary reports on product specifications such as restriction and errata			
Software	User's Manual: Software	Command set, API reference and programming information			
	Application Notes	Project files, guidelines for software programming, and application examples to develop embedded software applications			
Tools & Kits, Solutions	User's Manual: Development Tools	User's manuals and quick start guides for developing embedded			
	Quick Start Guide	software applications with Software Packages, Development Kits, Starter Kits, Promotion Kits, Product Examples, and Application Examples			
	Application Notes	Project files, guidelines for software programming, and application examples to develop embedded software applications			

RA4E1 Datasheet Revision History

Revision History

Revision 1.00 — September 15, 2021

First edition, issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Precaution against Electrostatic Discharge (ESD)
 - A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
- 2. Processing at power-on
 - The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
- 3. Input of signal during power-off state
 - Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
- 4. Handling of unused pins
 - Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible
- 5. Clock signals
 - After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses
 - Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
- 8. Differences between products
 - Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.